k8s 1.18.2部署实践

网友投稿 300 2022-10-28

k8s 1.18.2部署实践

由于业务需要,近期在研究k8s,故就需要先部署一套。我通过官方文档来部署发现还是有一些坑,故整理了部署中遇到的问题做个记录。本文章主要介绍了在centos7环境下k8s 1.18.2+dashboard+metrics server+ingress的部署。

系统环境

1,k8s的版本为1.18.22,docker ce的版本为19.03.8-33,五台主机操作系统版本为centos7,kernel版本3.10.0-9574,使用五台主机部署,机器列表172.18.2.175 master1172.18.2.180 master2172.18.2.181 master3172.18.2.186 work1172.18.2.187 work2172.18.2.182 apiserver-lb

部署HA架构

1,etcd是使用Go语言开发的一个开源的、高可用的强一致性分布式key-value存储系统,可以用于配置共享和服务的注册和发现集群,每个节点都可以提供服务。2,kubernetes系统组件间只能通过API服务器通信,它们之间不会直接通信,API服务器是和etcd通信的唯一组件。 其他组件不会直接和etcd通信,需要通过API服务器来修改集群状态。3,controller-manager和scheduler监听API服务器变化,如果API服务器有更新则进行对应的操作。4,由于各个组件都需要和API服务器通信,默认情况下组件通过指定一台API服务器的ip进行通信。故需要配置API服务的高可用,我们通过单独部署一套高可用负载均衡服务,配置一个VIP,此VIP的后端是三台API服务器,在负载均衡层做转发和API服务器的监控检查,从而实现API服务的高可用。5,默认情况下,master节点本机的组件只会和本机的API服务器或者etcd进行通信。6,高可用master节点至少3台机器,官方建议可以根据集群大小扩容。

环境准备和kubeadm工具箱安装

1,确认每台机器的时区和时间都正确,如果不正确执行如下命令

# rm -rf /etc/localtime;ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime # /usr/sbin/ntpdate -u ntp.ubuntu.com cn.pool.ntp.org;clock -w # echo "*/30 * * * * /usr/sbin/ntpdate -u ntp.ubuntu.com cn.pool.ntp.org;clock -w" >> /var/spool/cron/root;chmod 600 /var/spool/cron/root

2,每台机器设置主机名

hostnamectl set-hostname

3,每台机器添加所有机器的主机名到ip的映射,有些服务通过主机名来相互通信,例如metrics server获取node的状态信息

# cat << EOF >> /etc/hosts 172.18.2.175 master1 172.18.2.180 master2 172.18.2.181 master3 172.18.2.186 work1 172.18.2.187 work2 EOF

4,确保每台机器mac地址的唯一性

# ip addr

5,确保每台机器product_uuid的唯一性

# cat /sys/class/dmi/id/product_uuid

6,禁用每台机器的swap

# swapoff -a # sed -i.bak '/ swap /s/^/#/' /etc/fstab

7,由于k8s在v1.2及之后版本kube-proxy默认使用iptables来实现代理功能,而通过bridge-netfilter的设置可以使 iptables过滤bridge的流量。如果容器是连接到bridge的这种情况,那么就必须将bridge-nf-call-iptables参数设置为1,使iptables能过滤到bridge的流量,确保kube-proxy正常工作。默认情况下,iptables不过滤bridge的流量。

# lsmod | grep br_netfilter # modprobe br_netfilter 注意:当kernel版本比较低的时候,可能出现报错找不到对应的module,可以通过升级kernel解决 # cat < /etc/sysctl.d/k8s.conf net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 EOF # sysctl --system

8,每台机器关闭firewalld防火墙和selinux

# systemctl disable --now firewalld # setenforce 0 # sed -i 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config

9,每台机器添加阿里k8s和docker的官方yum repo

# cat << EOF > /etc/yum.repos.d/kubernetes.repo [kubernetes] name=Kubernetes baseurl=http://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64 enabled=1 gpgcheck=0 repo_gpgcheck=0 gpgkey=http://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg EOF # yum install -y yum-utils # yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

9,不同角色的机器需要开放对应端口
master节点:
协议 方向 端口范围 作用 使用者
TCP 入站 6443 Kubernetes API 服务器 所有组件
TCP 入站 2379-2380 etcd server client API kube-apiserver, etcd
TCP 入站 10250 Kubelet API kubelet自身、控制平面组件
TCP 入站 10251 kube-scheduler kube-scheduler自身
TCP 入站 10252 kube-controller-manager kube-controller-manager自身
work节点:
协议 方向 端口范围 作用 使用者
TCP 入站 10250 Kubelet API kubelet 自身、控制平面组件
TCP 入站 30000-32767 NodePort 服务 所有组件

10,每台机器安装docker环境

# yum install docker-ce -y # systemctl enable --now docker

11,每台机器安装kubeadm,kubelet,kubectlkubeadm:用来初始化集群的指令。kubelet:在集群中的每个节点上用来启动pod和容器等。kubectl:用来与集群通信的命令行工具。

# yum install -y kubelet kubeadm kubectl –disableexcludes=kubernetes # systemctl enable --now kubelet

配置HA负载均衡通过VIP方式访问API Server服务

1,创建的HA负载均衡器监听端口:6443 / TCP2,配置其后端:172.18.2.175:6443,172.18.2.180:6443,172.18.2.181:64433,开启按源地址保持会话4,配置完成之后,HA负载均衡VIP为172.18.2.182

k8s集群master节点配置

1,在master1上执行init命令

# kubeadm init --kubernetes-version 1.18.2 --image-repository registry.cn-hangzhou.aliyuncs.com/google_containers --control-plane-endpoint apiserver-lb:6443 --upload-certs W0513 07:18:48.318511 30399 configset.go:202] WARNING: kubeadm cannot validate component configs for API groups [kubelet.config.k8s.io kubeproxy.config.k8s.io] [init] Using Kubernetes version: v1.18.2 [preflight] Running pre-flight checks [WARNING IsDockerSystemdCheck]: detected "cgroupfs" as the Docker cgroup driver. The recommended driver is "systemd". Please follow the guide at vim /etc/docker/daemon.json { "registry-mirrors": ["https://v16stybc.mirror.aliyuncs.com"], "exec-opts": ["native.cgroupdriver=systemd"] } # systemctl daemon-reload # systemctl restart docker

3,在master1上继续执行init命令

# kubeadm init --kubernetes-version 1.18.2 --image-repository registry.cn-hangzhou.aliyuncs.com/google_containers --control-plane-endpoint apiserver-lb:6443 --upload-certs Your Kubernetes control-plane has initialized successfully! To start using your cluster, you need to run the following as a regular user: mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config You should now deploy a pod network to the cluster. Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at: https://kubernetes.io/docs/concepts/cluster-administration/addons/ You can now join any number of the control-plane node running the following command on each as root: kubeadm join apiserver-lb:6443 --token i7ffha.cbp9wse6jhy4uz2q \ --discovery-token-ca-cert-hash sha256:1f084d1ac878308635f1dbe8676bac33fe3df6d52fa212834787a0bc71f1db6d \ --control-plane --certificate-key e6d08e338ee5e0178a85c01067e223d2a00b5ac0e452bca58561976cf2187dd5 Please note that the certificate-key gives access to cluster sensitive data, keep it secret! As a safeguard, uploaded-certs will be deleted in two hours; If necessary, you can use "kubeadm init phase upload-certs --upload-certs" to reload certs afterward. Then you can join any number of worker nodes by running the following on each as root: kubeadm join apiserver-lb:6443 --token i7ffha.cbp9wse6jhy4uz2q \ --discovery-token-ca-cert-hash sha256:1f084d1ac878308635f1dbe8676bac33fe3df6d52fa212834787a0bc71f1db6d

如上输出已经提供了初始化其它master和其它work节点的命令(token有过期时间,默认2h,过期则如上命令就失效,需要手动重新生成token),但是需要等master1上所有服务都就绪后才能执行,具体见接下来的步骤。

命令选项说明:--image-repository:默认master初始化时,k8s会从k8s.gcr.io拉取容器镜像,由于国内此地址访问不到,故调整为阿里云仓库--control-plane-endpoint: 配置VIP地址映射的域名和port--upload-certs:将master之间的共享证书上传到集群

4,根据步骤3的输出提示在master1上执行如下命令

# mkdir -p $HOME/.kube # cp -i /etc/kubernetes/admin.conf $HOME/.kube/config # chown $(id -u):$(id -g) $HOME/.kube/config

使用calico做为pod之间通信用的CNI(Container Network Interface),并修改calico.yaml如下字段配置,确保calico的ipv4地址池和k8s的service cidr相同。从calico3.x开始,默认的通信模式为IPIP模式。在Calico IPIP模式,Pod间跨Node通信是通过Node IP建立IPIP隧道建立通信,Pod访问集群外网络,是通过Node SNAT 出去。只要保证Node网络是高可用的,Calico网络也是高可用。

# wget https://docs.projectcalico.org/v3.14/manifests/calico.yaml # vim calico.yaml - name: CALICO_IPV4POOL_CIDR value: "10.96.0.0/12" # kubectl apply -f calico.yaml

5,过10min左右在master1上执行如下命令查看所有的pod是否都处于Running状态,然后再继续接下来的步骤

# kubectl get pods -A -o wide NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES kube-system calico-kube-controllers-789f6df884-66bf8 1/1 Running 0 75s 10.97.40.67 master1 kube-system calico-node-65dks 1/1 Running 0 75s 172.18.2.175 master1 kube-system coredns-546565776c-wwdmq 1/1 Running 0 115s 10.97.40.65 master1 kube-system coredns-546565776c-z66mm 1/1 Running 0 115s 10.97.40.66 master1 kube-system etcd-master1 1/1 Running 0 116s 172.18.2.175 master1 kube-system kube-apiserver-master1 1/1 Running 0 116s 172.18.2.175 master1 kube-system kube-controller-manager-master1 1/1 Running 0 116s 172.18.2.175 master1 kube-system kube-proxy-ghc7q 1/1 Running 0 115s 172.18.2.175 master1 kube-system kube-scheduler-master1 1/1 Running 0 116s 172.18.2.175 master1

6,如果初始化有问题,则执行如下命令后重新初始化

# kubeadm reset # rm -rf $HOME/.kube/config

7,在master上执行验证API Server是否正常访问(需要负载均衡正确配置完成)

# curl -k { "major": "1", "minor": "18", "gitVersion": "v1.18.2", "gitCommit": "52c56ce7a8272c798dbc29846288d7cd9fbae032", "gitTreeState": "clean", "buildDate": "2020-04-16T11:48:36Z", "goVersion": "go1.13.9", "compiler": "gc", "platform": "linux/amd64"

8,如果距master1初始化时间没超过2h,则在master2和master3执行如下命令,开始初始化

# kubeadm join apiserver-lb:6443 --token i7ffha.cbp9wse6jhy4uz2q \ --discovery-token-ca-cert-hash sha256:1f084d1ac878308635f1dbe8676bac33fe3df6d52fa212834787a0bc71f1db6d \ --control-plane --certificate-key e6d08e338ee5e0178a85c01067e223d2a00b5ac0e452bca58561976cf2187dd5

master2和master3初始化完成之后,查看node状态:

# kubectl get nodes NAME STATUS ROLES AGE VERSION master1 Ready master 3h7m v1.18.2 master2 Ready master 169m v1.18.2 master3 Ready master 118m v1.18.2

9,如果距master1初始化时间超过2h,token已经过期,则需要在master1上重新生成token和cert,再在master2和master3上执行初始化在master1上重新生成token和cert:

# kubeadm init phase upload-certs --upload-certs W0514 13:22:23.433664 656 configset.go:202] WARNING: kubeadm cannot validate component configs for API groups [kubelet.config.k8s.io kubeproxy.config.k8s.io] [upload-certs] Storing the certificates in Secret "kubeadm-certs" in the "kube-system" Namespace [upload-certs] Using certificate key: b55acff8cd105fe152c7de6e49372f9ccde71fc74bdf6ec22a08feaf9f00eba4 # kubeadm token create --print-join-command W0514 13:22:41.748101 955 configset.go:202] WARNING: kubeadm cannot validate component configs for API groups [kubelet.config.k8s.io kubeproxy.config.k8s.io] kubeadm join apiserver-lb:6443 --token 1iznqy.ulvp986lej4zcace --discovery-token-ca-cert-hash sha256:1f084d1ac878308635f1dbe8676bac33fe3df6d52fa212834787a0bc71f1db6d

新的初始化master2和master3的命令如下:

# kubeadm join apiserver-lb:6443 --token 1iznqy.ulvp986lej4zcace --discovery-token-ca-cert-hash sha256:1f084d1ac878308635f1dbe8676bac33fe3df6d52fa212834787a0bc71f1db6d --control-plane --certificate-key b55acff8cd105fe152c7de6e49372f9ccde71fc74bdf6ec22a08feaf9f00eba4

新的初始化work节点的命令如下:

# kubeadm join apiserver-lb:6443 --token 1iznqy.ulvp986lej4zcace --discovery-token-ca-cert-hash sha256:1f084d1ac878308635f1dbe8676bac33fe3df6d52fa212834787a0bc71f1db6d

k8s集群worker节点配置

1,在work1和work2机器执行如下初始化命令

# kubeadm join apiserver-lb:6443 --token 1iznqy.ulvp986lej4zcace --discovery-token-ca-cert-hash sha256:1f084d1ac878308635f1dbe8676bac33fe3df6d52fa212834787a0bc71f1db6d

2,如果要重新初始化或者移除一个work节点,则执行如下步骤。在要重新初始化的work上执行:

# kubeadm reset

在master上执行:

# kubectl delete node work1 # kubectl delete node work2

3,在master1上执行查看master和work节点是否都正常运行

# kubectl get nodes NAME STATUS ROLES AGE VERSION master1 Ready master 4h31m v1.18.2 master2 Ready master 4h13m v1.18.2 master3 Ready master 3h22m v1.18.2 work1 Ready 82m v1.18.2 work2 Ready 81m v1.18.2 # kubectl get pods -A NAMESPACE NAME READY STATUS RESTARTS AGE kube-system calico-kube-controllers-789f6df884-vdz42 1/1 Running 1 4h37m kube-system calico-node-429s9 1/1 Running 1 89m kube-system calico-node-4cmwj 1/1 Running 1 4h37m kube-system calico-node-bhw9s 1/1 Running 1 89m kube-system calico-node-rw752 1/1 Running 1 3h29m kube-system calico-node-xcqp8 1/1 Running 1 4h21m kube-system coredns-546565776c-jjlsm 1/1 Running 1 4h38m kube-system coredns-546565776c-ztglq 1/1 Running 1 4h38m kube-system etcd-master1 1/1 Running 2 4h38m kube-system etcd-master2 1/1 Running 2 4h20m kube-system etcd-master3 1/1 Running 1 3h29m kube-system kube-apiserver-master1 1/1 Running 1 4h38m kube-system kube-apiserver-master2 1/1 Running 2 4h20m kube-system kube-apiserver-master3 1/1 Running 1 3h29m kube-system kube-controller-manager-master1 1/1 Running 2 4h38m kube-system kube-controller-manager-master2 1/1 Running 1 4h20m kube-system kube-controller-manager-master3 1/1 Running 1 3h29m kube-system kube-proxy-5lf4b 1/1 Running 1 89m kube-system kube-proxy-dwh7w 1/1 Running 1 4h38m kube-system kube-proxy-nndpn 1/1 Running 1 89m kube-system kube-proxy-spclw 1/1 Running 1 4h21m kube-system kube-proxy-zc25r 1/1 Running 1 3h29m kube-system kube-scheduler-master1 1/1 Running 2 4h38m kube-system kube-scheduler-master2 1/1 Running 2 4h20m kube-system kube-scheduler-master3 1/1 Running 1 3h29m

安装dashbaord

Dashboard可以将容器应用部署到Kubernetes集群中,也可以对容器应用排错,还能管理集群资源。您可以使用Dashboard获取运行在集群中的应用的概览信息,也可以创建或者修改Kubernetes资源(如 Deployment,Job,DaemonSet 等等)。例如,您可以对Deployment实现弹性伸缩、发起滚动升级、重启Pod或者使用向导创建新的应用。

Dashboard同时展示了Kubernetes集群中的资源状态信息和所有报错信息。

1,在master1上安装下载manifests:

# wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml

通过NodePod的方式访问dashboard

修改recommended.yaml如下内容 kind: Service apiVersion: v1 metadata: labels: k8s-app: kubernetes-dashboard name: kubernetes-dashboard namespace: kubernetes-dashboard spec: ports: - port: 443 targetPort: 8443 selector: k8s-app: kubernetes-dashboard 为 kind: Service apiVersion: v1 metadata: labels: k8s-app: kubernetes-dashboard name: kubernetes-dashboard namespace: kubernetes-dashboard spec: type: NodePort ports: - port: 443 targetPort: 8443 nodePort: 30008 selector: k8s-app: kubernetes-dashboard

部署dashboard

# kubectl apply -f recommended.yaml

获取登陆dashboard的token

# kubectl -n kubernetes-dashboard describe secret $(kubectl -n kubernetes-dashboard get secret | grep dashboard-admin | awk '{print $1}')

# # kubectl logs -f kubernetes-dashboard-7b544877d5-225rk -n kubernetes-dashboard 2020/05/14 08:21:35 Getting list of all pet sets in the cluster 2020/05/14 08:21:35 Non-critical error occurred during resource retrieval: pods is forbidden: User "system:serviceaccount:kubernetes-dashboard:kubernetes-dashboard" cannot list resource "pods" in API group "" in the namespace "default" 2020/05/14 08:21:35 Non-critical error occurred during resource retrieval: events is forbidden: User "system:serviceaccount:kubernetes-dashboard:kubernetes-dashboard" cannot list resource "events" in API group "" in the namespace "default" 2020/05/14 08:21:35 [2020-05-14T08:21:35Z] Outcoming response to 10.97.40.64:58540 with 200 status code 2020/05/14 08:21:35 Non-critical error occurred during resource retrieval: statefulsets.apps is forbidden: User "system:serviceaccount:kubernetes-dashboard:kubernetes-dashboard" cannot list resource "statefulsets" in API group "apps" in the namespace "default" 2020/05/14 08:21:35 Non-critical error occurred during resource retrieval: pods is forbidden: User "system:serviceaccount:kubernetes-dashboard:kubernetes-dashboard" cannot list resource "pods" in API group "" in the namespace "default" 2020/05/14 08:21:35 Non-critical error occurred during resource retrieval: events is forbidden: User "system:serviceaccount:kubernetes-dashboard:kubernetes-dashboard" cannot list resource "events" in API group "" in the namespace "default"

通过如上日志我们可以看到dashboard没有访问其他namespace和相关资源的权限,我们通过调整rbac来解决:

# vim r.yaml kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: labels: k8s-app: kubernetes-dashboard name: kubernetes-dashboard rules: # Allow Metrics Scraper to get metrics from the Metrics server - apiGroups: ["","apps","batch","extensions", "metrics.k8s.io"] resources: ["*"] verbs: ["get", "list", "watch"] # kubectl apply -f r.yaml

安装Metrics server

从 Kubernetes 1.8开始,官方废弃heapster项目,为了将核心资源监控作为一等公民对待,资源使用指标,例如容器 CPU 和内存使用率,可通过 Metrics API 在 Kubernetes 中获得。这些指标可以直接被用户访问,比如使用kubectl top命令行,或者这些指标由集群中的控制器使用,例如,Horizontal Pod Autoscaler,使用这些指标来做决策。主要有两部分功能:1,Metrics API通过Metrics API,您可以获得指定节点或pod当前使用的资源量。此API不存储指标值,因此想要获取某个指定节点10分钟前的资源使用量是不可能的。2,Metrics Server它集群范围资源使用数据的聚合器。 从Kubernetes 1.8开始,它作为Deployment对象,被默认部署在由kube-up.sh脚本创建的集群中。如果您使用不同的Kubernetes安装方法,则可以使用提供的deployment manifests来部署。Metric server 从每个节点上的 Kubelet 公开的 Summary API 中采集指标信息。

1,安装下载和修改manifests文件替换国内访问不到的k8s.gcr.io地址

# wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.3.6/components.yaml # sed -i 's#k8s.gcr.io#registry.cn-hangzhou.aliyuncs.com/google_containers#g' components.yaml # kubectl apply -f components.yaml

2,测试使用确保metrics server运行

# kubectl get pods -A |grep "metrics-server" kube-system metrics-server-68b7c54c96-nqpds 1/1 Running 0 48s

获取node的cpu,内存信息,发现报错

# kubectl top nodes error: metrics not available yet

3,查看metrics-server-68b7c54c96-nqpds这个pod的日志来分析

# kubectl logs -f metrics-server-68b7c54c96-nqpds -n kube-system E0514 11:20:58.357516 1 manager.go:111] unable to fully collect metrics: [unable to fully scrape metrics from source kubelet_summary:work2: unable to fetch metrics from Kubelet work2 (work2): Get dial tcp: lookup work2 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:master2: unable to fetch metrics from Kubelet master2 (master2): Get dial tcp: lookup master2 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:master1: unable to fetch metrics from Kubelet master1 (master1): Get dial tcp: lookup master1 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:work1: unable to fetch metrics from Kubelet work1 (work1): Get dial tcp: lookup work1 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:master3: unable to fetch metrics from Kubelet master3 (master3): Get dial tcp: lookup master3 on 10.96.0.10:53: no such host]

通过查看如上log,应该是dns解析的问题。k8s中使用coredns负责所有pod的dns解析,而master1,master2,master3,work1,work2是服务器的主机名不是pod的,故没有对应的解析。

4,通过google,发现解决办法有两个:第一个办法:直接使用http方式+ip来获取node的metrics信息,缺点就是不安全,没有了https。找到componets.yaml文件中args相关的行,args修改为如下内容:

containers: - args: - --cert-dir=/tmp - --secure-port=4443 - --kubelet-insecure-tls - --kubelet-preferred-address-types=InternalIP # kubectl apply -f components.yaml

过几分钟,就能正常获取node的cpu,内存信息

# kubectl top nodes NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% master1 204m 10% 1189Mi 68% master2 137m 6% 1079Mi 62% master3 141m 7% 1085Mi 62% work1 92m 4% 879Mi 50% work2 94m 4% 876Mi 50%

第二个办法:仍然使用kubectl -n kube-system get configmap coredns -o yaml > coredns.yaml

给coredns配置添加hosts块的配置,此配置从默认从/etc/hosts加载映射后添加到coredns的解析中:

# cat coredns.yaml apiVersion: v1 data: Corefile: | .:53 { errors health { lameduck 5s } ready kubernetes cluster.local in-addr.arpa ip6.arpa { pods insecure fallthrough in-addr.arpa ip6.arpa ttl 30 } hosts { 172.18.2.175 master1 172.18.2.180 master2 172.18.2.181 master3 172.18.2.186 work1 172.18.2.187 work2 172.18.2.182 apiserver-lb fallthrough } prometheus :9153 forward . /etc/resolv.conf cache 30 loop reload loadbalance } kind: ConfigMap metadata: creationTimestamp: "2020-05-14T02:21:41Z" managedFields: - apiVersion: v1 fieldsType: FieldsV1 fieldsV1: f:data: .: {} f:Corefile: {} manager: kubeadm operation: Update time: "2020-05-14T02:21:41Z" name: coredns namespace: kube-system resourceVersion: "216" selfLink: /api/v1/namespaces/kube-system/configmaps/coredns uid: a0e4adaa-8577-4b99-aef2-a543988a6ea8 # kubectl apply -f coredns.yaml

2)查看metrics-server-68b7c54c96-d9r25这个pod的日志

# kubectl logs -f metrics-server-68b7c54c96-d9r25 -n kube-system E0514 11:52:59.242690 1 manager.go:111] unable to fully collect metrics: [unable to fully scrape metrics from source kubelet_summary:master1: unable to fetch metrics from Kubelet master1 (master1): Get x509: certificate signed by unknown authority, unable to fully scrape metrics from source kubelet_summary:master3: unable to fetch metrics from Kubelet master3 (master3): Get x509: certificate signed by unknown authority, unable to fully scrape metrics from source kubelet_summary:work1: unable to fetch metrics from Kubelet work1 (work1): Get x509: certificate signed by unknown authority, unable to fully scrape metrics from source kubelet_summary:work2: unable to fetch metrics from Kubelet work2 (work2): Get x509: certificate signed by unknown authority, unable to fully scrape metrics from source kubelet_summary:master2: unable to fetch metrics from Kubelet master2 (master2): Get x509: certificate signed by unknown authority]

我们发现又有新的报错产生,看着应该是证书问题。通过google发现可能是由于master节点上kubelet的证书和node上kubelet的证书由不同的本地系统的ca签发,导致不可信。所有节点(master和node)上的证书,可以在master1上是用master1本地的CA重新生成所有节点的kubelet证书来解决。3)重新生成master1上kubelet的证书安装CFSSL

curl -s -L -o /bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 curl -s -L -o /bin/cfssljson https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 curl -s -L -o /bin/cfssl-certinfo https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 chmod +x /bin/cfssl*

生成过期时间为2年的证书配置

# mkdir ~/mycerts; cd ~/mycerts # cp /etc/kubernetes/pki/ca.crt ca.pem # cp /etc/kubernetes/pki/ca.key ca-key.pem # cat kubelet-csr.json { "CN": "kubernetes", "hosts": [ "127.0.0.1", "master1", "kubernetes", "kubernetes.default", "kubernetes.default.svc", "kubernetes.default.svc.cluster", "kubernetes.default.svc.cluster.local" ], "key": { "algo": "rsa", "size": 2048 }, "names": [{ "C": "US", "ST": "NY", "L": "City", "O": "Org", "OU": "Unit" }] } # cat ca-config.json { "signing": { "default": { "expiry": "17520h" }, "profiles": { "kubernetes": { "usages": [ "signing", "key encipherment", "server auth", "client auth" ], "expiry": "17520h" } } } } # cat config.json { "signing": { "default": { "expiry": "168h" }, "profiles": { "{ "expiry": "17520h", "usages": [ "signing", "key encipherment", "server auth" ] }, "client": { "expiry": "17520h", "usages": [ "signing", "key encipherment", "client auth" ] } } } } # cfssl gencert -ca=ca.pem -ca-key=ca-key.pem \ --config=ca-config.json -profile=kubernetes \ kubelet-csr.json | cfssljson -bare kubelet # scp kubelet.pem root@master1:/var/lib/kubelet/pki/kubelet.crt # scp kubelet-key.pem root@master1:/var/lib/kubelet/pki/kubelet.key

4)在master1上为master2生成kubelet证书,只需要修改(3)步骤中kubelet-csr.json配置中master1改为master2,scp中master1为master2,然后完整执行(3)的其它步骤即可。master3,work1,work2证书的生成步骤相同。5)重启每台机器的kubelet

# systemctl restart kubelet

6)过几分钟,就能正常获取node的cpu,内存信息。并且,通过dashbaord也能显示node的cpu和内存信息了。

# kubectl top nodes NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% master1 246m 12% 1202Mi 69% master2 152m 7% 1094Mi 62% master3 160m 8% 1096Mi 63% work1 97m 4% 882Mi 50% work2 98m 4% 879Mi 50%

安装Ingress

Ingress控制器一般作为应用的访问入口,如果应用访问量大,则会给Ingress控制器带来很大压力,故一般Ingress控制器需要部署多台。建议使用daemon-set部署在指定的多个节点,然后在Ingress控制器前面再挂一个有外网的nginx负载均衡器给Ingress做请求转发,从而访问到应用。而Ingress控制器这个pod通过hostNetwork方式使用节点网络,从而实现了通过节点ip访问Ingress。

nginx ingress主要有k8s官方提供的(ingress是nginx官方提供的:

# git clone https://github.com/nginxinc/kubernetes-ingress/ # cd kubernetes-ingress/deployments # git checkout v1.7.0 # kubectl apply -f common/ns-and-sa.yaml # kubectl apply -f rbac/rbac.yaml # kubectl apply -f common/default-server-secret.yaml # kubectl apply -f common/nginx-config.yaml # kubectl apply -f common/vs-definition.yaml # kubectl apply -f common/vsr-definition.yaml # kubectl apply -f common/ts-definition.yaml # kubectl apply -f common/gc-definition.yaml # kubectl apply -f common/global-configuration.yaml

修改daemonset的manifests,在“serviceAccountName: nginx-ingress”这一行下面追加如下配置,实现在master上部署Ingress,当然也可以给某些时候跑Ingress控制器的节点添加label,然后在指定的节点运行。

# vim daemon-set/nginx-ingress.yaml hostNetwork: true # 使ingress控制器这个pod使用节点的网络,即通过节点的ip就能访问到该pod的服务,该ingress控制器就成为了集群的入口 affinity: #使用亲和性配置限制服务只能部署在master上 nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchExpressions: - key: node-role.kubernetes.io/master operator: Exists tolerations: #使用亲和性配置限制服务只能部署在master上 - key: node-role.kubernetes.io/master operator: Exists effect: NoSchedule # kubectl apply -f daemon-set/nginx-ingress.yaml

查看状态

# kubectl get pods -n nginx-ingress NAME READY STATUS RESTARTS AGE nginx-ingress-4brsn 1/1 Running 0 75m nginx-ingress-6cfsj 1/1 Running 0 75m nginx-ingress-x685c 1/1 Running 0 75m # kubectl get daemonset -n nginx-ingress NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE nginx-ingress 3 3 3 3 3 76m

参考文档

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Type-C接口统一是大势所趋 主要有这四点原因
下一篇:ST-BUS总线接口模块的Verilog HDL设计
相关文章

 发表评论

暂时没有评论,来抢沙发吧~