linux cpu占用率如何看
446
2022-10-24
20个非常有价值的人工智能和机器学习领域的API
用于机器学习和预测的API
1. BigML
这个API的确可以称得上是你手中的完美武器,即使你可能从未有过相关经验,使用BigML也能获得很大的效率提升。
PredictionIO最可贵的品质在于,它可以免费部署API。
它提供了各种几乎完整的模板,可以根据用例进行定制;一旦作为Web服务部署,就能立即响应动态查询;提供了组织良好且广泛的文档,包括开发人员指令,演示教程等;API会定期更新,不断会有新的高级功能出现。
3. Anaconda
4. Blue Yonder Platform
如果你想为零售行业找到优秀的API,那么Blue Yonder Platform将是最佳选择。为什么这么说呢?
这个基于云的可扩展平台使用人工智能、机器学习技术,主要用作预测应用,可快速响应市场动态变化。该公司声称Blue Yonder Platform可以将零售商缺货率降低80%,并将其收入和利润提高5%以上!天哪,更可怕的事,这好像是真的!
除了构建所需的应用程序外,还可以将其与ERP或HR等现有系统集成。
5. MLJAR
6. NuPIC
Recombee是一个SAAS解决方案,它通过直观的实时API提供建议。Recombee通过RESTful API利用记录挖掘,问题语言和机器学习算法(例如,协同过滤和基于内容的建议)。最重要的是,API文档编写的非常用心,清晰明了,在工作中使用它非常方便。
8. indico
indico是最受欢迎的预测分析软件API之一,所以不可能忘记这个名字。这个API有两个主要功能:文本评估(情感分析,参与,情感)和照片评估(面部情绪,面部定位)。它最大的优点是可以免费使用,不需要任何训练数据,因此可以立即使用。
用于人脸检测和人脸识别的API
9. Animetrics Face Recognition
如果你只是想创建一个人脸识别软件或只是进行图像分析的话,Animetrics Face Recognition会是一个很好的接口。首先可以用它来检测照片和图片中的人脸,然后与一组已知的人脸进行匹配。 另一个优势是关于面部特征的信息,或者地标作为图像上的坐标返回。 此外,此API还可以从可搜索的图库上传或撤销一个主题,并从上传或删除面部。
10. Eyedea Recognition
Eyedea Recognition是物体检测和物体识别领域的真正巨人。该API基于机器学习和人工智能的前沿研究成果,完美地处理了一系列根据客户规范准备的软件解决方案。这种灵活的识别服务提供眼睛、面部、汽车、版权甚至车牌检测。API最重要的价值是可以获得对象、客户和行为的即时信息。
11. Betaface
强烈建议了解有关此API的所有信息!它是一个强大且可扩展的平台,用于扫描上传的文件或照片网址,检测面孔并进行检查。这个API具备以下能力:多个面部检测、面部裁剪、123个面部点检测(22个基本点,101个高级点)、面部验证,以及非常庞大的数据库中的相似性搜索。
12. Imagga
一个更强大的API,用于图像分析、即时图像分类、颜色提取和内容感知裁剪。Imagga提供的API可以自动为镜头分配标签,使得图片可以被轻松的找到,它基于图像识别Platform-as-a-Service。
用于文本分析和自然语言处理API
Bitext API是另一个深度语言分析工具,提供易于导出到各种数据管理工具的数据。该平台产品可用于聊天机器人和智能助手、CS和Sentiment,以及一些其他核心NLP任务。这个API的重点是语义、语法、词典和语料库,可用于80多种语言。此外,该API是客户反馈分析自动化方面的最佳API之一。该公司声称可以将洞察的准确度做到90%。
15. Geneea
Geneea对提供的原始文本,从给定URL提取的文本或直接从提供的文档执行分析(自然语言处理)。这里的巨大优势是相当多的可用语言(超过30种)。Geneea对语言、主题识别、情感检测、实体提取、自动标记等主题进行分析,并对捷克文本的变音符号进行各种校正。
16. Diffbot Analyze
17. Yactraq Speech2Topics
18. MonkeyLearn
MonkeyLearn是一个人工智能平台,允许用户从原始文本中分类和提取可操作的数据,如电子邮件、聊天信息、网页、文档、推特等。它最大限度地减少了上述任务所需的时间。
19. Hu:toma
这是一个开源的会话式AI驱动平台,有助于通过自然语言界面和AI助手简化对可操作数据的访问。如果想在自己的应用程序或网站中实现自然语言界面,这个API可以说是首选了。
20. nlpTools
nlpTools是一个开源的简单文本处理框架(一个用PHP编写的NLP库),用来分析自然语言。它可以解码在线新闻媒体,用于情感分析和文本分类。
结语
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~