推荐系统入门之使用协同过滤实现商品推荐

网友投稿 247 2022-10-11

推荐系统入门之使用协同过滤实现商品推荐

简介

场景将使用机器学习PAI平台,指导您搭建一个基于协同过滤算法的商品推荐系统。

背景知识

数据挖掘的一个经典案例就是尿布与啤酒的例子。尿布与啤酒看似毫不相关的两种产品,但是当超市将两种产品放到相邻货架销售的时候,会大大提高两者销量。很多时候看似不相关的两种产品,却会存在这某种神秘的隐含关系,获取这种关系将会对提高销售额起到推动作用,然而有时这种关联是很难通过经验分析得到的。这时候我们需要借助数据挖掘中的常见算法-协同过滤来实现。这种算法可以帮助我们挖掘人与人以及商品与商品的关联关系。

协同过滤算法是一种基于关联规则的算法。以购物行为为例,如果用户甲和用户乙都购买了商品A和商品B,则可以假定用户甲和用户乙的购物品味相似。当用户甲购买了商品C,而用户乙未购买时,可以将商品C推荐给用户乙,这就是经典的User-Based,即以User的特性为关联。

开通机器学习PAI服务

3.在机器学习PAI控制台首页,单击立即开通。

创建PAI Studio项目

在右侧弹出的创建项目页面,MaxCompute选择按量付费,填入项目名称,然后单击确定。

PAI Studio底层计算依赖MaxCompute,如果您未开通过当前区域的MaxCompute,请按照页面提示去购买。

创建实验

查看实验数据

1.右键单击cf_训练_data节点,然后单击查看数据。

运行实验

查看实验结果

表中similar_item字段为经过协同过滤算法计算得出的该用户购买可能性最大的商品。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:elasticsearch构造Client实现java客户端调用接口示例分析
下一篇:世纪联华的 Serverless 之路
相关文章

 发表评论

暂时没有评论,来抢沙发吧~