提升 RTC 音频体验 - 从搞懂硬件开始

网友投稿 264 2022-10-09

提升 RTC 音频体验 - 从搞懂硬件开始

前言

RTC(实时音视频通信)技术的快速发展,助力了直播、短视频等互动娱乐形式的普及;在全球疫情持续蔓延的态势下,云会议需求呈现爆发式增长,进一步推动了 RTC 行业的快速发展。为了给客户提供稳定可靠的服务,网络系统方面需要不断提升频道连通率,降低会议过程中的断流率,增强抗弱网能力;视频方面需要提升视频清晰度,降低视频卡顿率等,音频方面在追求端到端 MOS 的同时,也要重点关注音频 3A 算法的效果,这些都是各厂家必须修炼的 “内功”,也是最终沉淀下来的核心竞争力。本文将重点阐述硬件设备采集的音频质量对 RTC 端到端音频体验的重要性。

采集质量不佳,会有什么影响?

在 RTC 架构中,端到端的音频信号处理流程大致如下图,上行分别经过了音频信号的采集,音频 3A(AEC: 回声消除、ANS: 自适应降噪和 AGC: 自动增益控制)和编码;下行分别经过丢包恢复,解码,混音和播放。

不难看出,音频信号经过模数转换,再经过设备集成的音频信号处理芯片,最后才传递给 RTC SDK。由于硬件厂商的不同,音频采集解决方案参差不齐,因此采集到的音频质量的好坏直接影响着 3A 算法拿到的生产资料的可用性,同时也决定这最终用户接收到音频信号质量的上限。根据实际工作中遇到的音频问题,因为设备采集引起的问题基本可以归纳为如下几类:

举几个例子:

(1)采集异常

(2) 采集抖动

(3)爆音和音量小问题

(4)频谱缺失

改善采集音质,硬件层面我们能做什么?

具备 RTC 能力的硬件设备早已渗透我们生活的方方面面,常见的如移动端手机和 PC,现在甚至连儿童电话手表,天猫精灵以及各种高端的指纹密码锁等设备都支持了 RTC。然而,设备的多样性直接决定这采集能力的差异性,抛开声学元器件设计差异这一因素,就 Android 端而言,芯片和软件系统的差异使得同一品牌的手机,也没办法用同一种配置适配所有型号的手机。

另外,现在绝大多数的移动端设备都自带硬件音频信号处理(后称硬件 3A)能力,不同芯片效果方面也是千差万别的同时,更严重的是经过硬件处理的音频信号频谱往往会有缺失,如开启硬件 3A 后回调到 RTC SDK 的音频信号频谱上限仅支持到 8k,相当于 16kHz 采样的音频信号,尤其在娱乐方面根本无法满足我们对高音质的追求。因此,做好硬件层的适配工作,是保障 RTC 高质量音频体验的基础。

Android 端

(1)需要搞清楚 javaaudioclass 和 opensles 这两种模式的差异,以及各自需要适配的参数,掌握关闭硬件 3A 的配置。

(2)采集抖动或音频音量异常,可以试试更改请求的采样率,通常设置的 48k 采样不会适用于所有的 android 设备。

Windows 端

(1)当前很多 Windows 设备会在屏幕顶端内置麦克风阵列,提供音频增强功能,开启方式如下图。这个功能默认屏幕正前方夹角区域为拾音区域,通过麦克风阵列技术可以有效的增强拾音区域内发言人语音,“隔离” 拾音区域以外的 “噪声”,其主要的弊端就在于开启此功能后仅支持 8k 频谱,且各厂家增强算法存在差异,效果也参差不齐。因此,软件需要具备能够 bypass 硬件自带音频增强功能的能力,为高音质做保障。

(2)音量方面,PC 端设备都支持模拟增益调节,大多数带有阵列的 Windows 设备都有额外的麦克风加强(如下图)。软件算法层面(3A 中的 AGC)需要具备自适应调节他们的能力,保障音频采集音量的平稳以控制采集底噪水平。初值设置或自适应调节不当都会导致音量小和爆音等问题,严重的会影响回声消除和降噪的效果,带来影响可用性的风险。

苹果设备

(1)ios 端适配工作较少,需要熟悉关闭硬件 3A 的配置,因为 ios 设备自带的硬件 3A 频谱也只能支持到 10k-12k。

(2)Mac 笔记本设备比较简单,仅提供了模拟增益调节。但是有一点需要注意,RTC 在支持双声道播放时,由于麦克风会与某个扬声器在同一侧,导致播放音频时附近的麦克风采集爆音问题,一般只能优化软件 AEC 算法解决。

总结

当 48k 高音质成了刚需,为了保障采集环节的高质量,一方面需要投入时间去掌握 Android 参数适配的规律,同时市面上出现的越来越多的定制化的 android 设备(手表,智能音箱等),也必不可少的需要先确定好配置参数;另一方面关闭硬件设备自带的音频处理功能,启用 RTC 自带的纯软 3A 算法也是一种趋势,前提是要优化好软件 3A 算法整体效果以及控制好功耗,这也是客户评测各厂家之间音频体验的必测项,也是各厂家的核心竞争力之一。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:SpringBoot进行参数校验的方法详解
下一篇:零基础入门Serverless:基于函数计算快速搭建Zblog博客系统(1500份礼品 自己部署自己抽)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~