剖析Fork join并发框架工作窃取算法

网友投稿 229 2022-09-29

剖析Fork join并发框架工作窃取算法

目录什么是Fork/Join框架工作窃取算法Fork/Join框架的介绍使用Fork/Join框架Fork/Join框架的异常处理Fork/Join框架的实现原理Fork/Join源码剖析与算法解析与ThreadPool的区别

什么是Fork/Join框架

Fork/Join框架是java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。

我们再通过Fork和Join这两个单词来理解下Fork/Join框架,Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果。比如计算1+2+。。+10000,可以分割成10个子任务,每个子任务分别对1000个数进行求和,最终汇总这10个子任务的结果。Fork/Join的运行流程图如下:

工作窃取算法

工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。工作窃取的运行流程图如下:

那么为什么需要使用工作窃取算法呢?假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。

Fork/Join框架的介绍

我们已经很清楚Fork/Join框架的需求了,那么我们可以思考一下,如果让我们来设计一个Fork/Join框架,该如何设计?这个思考有助于你理解Fork/Join框架的设计。

第一步分割任务。首先我们需要有一个fork类来把大任务分割成子任务,有可能子任务还是很大,所以还需要不停的分割,直到分割出的子任务足够小。

第二步执行任务并合并结果。分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果都统一放在一个队列里,启动一个线程从队列里拿数据,然后合并这些数据。

Fork/Join使用两个类来完成以上两件事情:

ForkJoinTask:我们要使用ForkJoin框架,必须首先创建一个ForkJoin任务。它提供在任务中执行fork()和join()操作的机制,通常情况下我们不需要直接继承ForkJoinTask类,而只需要继承它的子类,Fork/Join框架提供了以下两个子类:

RecursiveAction:用于没有返回结果的任务。RecursiveTask :用于有返回结果的任务。

ForkJoinPool :ForkJoinTask需要通过ForkJoinPool来执行,任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里暂时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。

使用Fork/Join框架

让我们通过一个简单的需求来使用下Fork/Join框架,需求是:计算1+2+3+4的结果。

使用Fork/Join框架首先要考虑到的是如何分割任务,如果我们希望每个子任务最多执行两个数的相加,那么我们设置分割的阈值是2,由于是4个数字相加,所以Fork/Join框架会把这个任务fork成两个子任务,子任务一负责计算1+2,子任务二负责计算3+4,然后再join两个子任务的结果。

因为是有结果的任务,所以必须继承RecursiveTask,实现代码如下:

packagefj;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.Future;

import java.util.concurrent.RecursiveTask;

public class CountTaskextendsRecursiveTask {

private static final int THRESHOLD= 2;//阈值

private int start;

private int end;

public CountTask(intstart,intend) {

this.start= start;

this.end= end;

}

@Override

protected Integer compute() {

intsum = 0;

//如果任务足够小就计算任务

booleancanCompute = (end-start) <=THRESHOLD;

if(canCompute) {

for(inti =start; i <=end; i++) {

sum += i;

}

}else{

//如果任务大于阀值,就分裂成两个子任务计算

intmiddle = (start+end) / 2;

CountTask leftTask =newCountTask(start, middle);

CountTask rightTask =newCountTask(middle + 1,end);

//执行子任务

leftTask.fork();

rightTask.fork();

//等待子任务执行完,并得到其结果

intleftResult=leftTask.join();

intrightResult=rightTask.join();

//合并子任务

sum = leftResult + rightResult;

}

returnsum;

}

public static void main(String[] args) {

ForkJoinPool forkJoinPool =newForkJoinPool();

//生成一个计算任务,负责计算1+2+3+4

CountTask task =newCountTask(1, 4);

//执行一个任务

Future result = forkJoinPool.submit(task);

try{

System.out.println(result.get());

}catch(InterruptedException e) {

}catch(ExecutionException e) {

}

}

}

通过这个例子让我们再来进一步了解ForkJoinTask,ForkJoinTask与一般的任务的主要区别在于它需要实现compute方法,在这个方法里,首先需要判断任务是否足够小,如果足够小就直接执行任务。如果不足够小,就必须分割成两个子任务,每个子任务在调用fork方法时,又会进入compute方法,看看当前子任务是否需要继续分割成孙任务,如果不需要继续分割,则执行当前子任务并返回结果。使用join方法会等待子任务执行完并得到其结果。

Fork/Join框架的异常处理

ForkJoinTask在执行的时候可能会抛出异常,但是我们没办法在主线程里直接捕获异常,所以ForkJoinTask提供了isCompletedAbnormally()方法来检查任务是否已经抛出异常或已经被取消了,并且可以通过ForkJoinTask的getException方法获取异常。

使用如下代码:

if(task.isCompletedAbnormally())

{

System.out.println(task.getException());

}

getException方法返回Throwable对象,如果任务被取消了则返回CancellationException。如果任务没有完成或者没有抛出异常则返回null。

Fork/Join框架的实现原理

ForkJoinPool由ForkJoinTask数组和ForkJoinWorkerThread数组组成,ForkJoinTask数组负责存放程序提交给ForkJoinPool的任务,而ForkJoinWorkerThread数组负责执行这些任务。

ForkJoinTask的fork方法实现原理。当我们调用ForkJoinTask的fork方法时,程序会调用ForkJoinWorkerThread的pushTask方法异步的执行这个任务,然后立即返回结果。代码如下:

public final ForkJoinTask fork() {

((ForkJoinWorkerThread) Thread.currentThread())

.pushTask(this);

return this;

}

pushTask方法把当前任务存放在ForkJoinTask 数组queue里。然后再调用ForkJoinPool的signalWork()方法唤醒或创建一个工作线程来执行任务。代码如下:

final void pushTask(ForkJoinTask t) {

ForkJoinTask[] q; int s, m;

if ((q = queue) != null) { // ignore if queue removed

long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;

UNSAFE.putOrderedObject(q, u, t);

queueTop = s + 1; // or use putOrderedInt

if ((s -= queueBase) <= 2)

pool.signalWork();

else if (s == m)

growQueue();

}

}

ForkJoinTask的join方法实现原理。Join方法的主要作用是阻塞当前线程并等待获取结果。让我们一起看看ForkJoinTask的join方法的实现,代码如下:

public final V join() {

if (doJoin() != NORMAL)

return reportResult();

else

return getRawResult();

}

private V reportResult() {

int s; Throwable ex;

if ((s = status) == CANCELLED)

throw new CancellationException();

if (s == EXCEPTIONAL && (ex = getThrowableException()) != null)

UNSAFE.throwException(ex);

return getRawResult();

}

首先,它调用了doJoin()方法,通过doJoin()方法得到当前任务的状态来判断返回什么结果,任务状态有四种:已完成(NORMAL),被取消(CANCELLED),信号(SIGNAL)和出现异常(EXCEPTIONAL)。

如果任务状态是已完成,则直接返回任务结果。如果任务状态是被取消,则直接抛出CancellationException。如果任务状态是抛出异常,则直接抛出对应的异常。

让我们再来分析下doJoin()方法的实现代码:

private int doJoin() {

Thread t;

ForkJoinWorkerThread w;

int s;

booleancompleted;

if ((t = Thread.currentThread()) instanceofForkJoinWorkerThread) {

if ((s = status) < 0)

return s;

if ((w = (ForkJoinWorkerThread)t).unpushTask(this)) {

try {

completed = exec();

}

catch (Throwable rex) {

return setExceptionalCompletion(rex);

}

if (completed)

return setCompletion(NORMAL);

}

return w.joinTask(this);

}

else

return externalAwaitDone();

}

在doJoin()方法里,首先通过查看任务的状态,看任务是否已经执行完了,如果执行完了,则直接返回任务状态,如果没有执行完,则从任务数组里取出任务并执行。如果任务顺利执行完成了,则设置任务状态为NORMAL,如果出现异常,则纪录异常,并将任务状态设置为EXCEPTIONAL。

Fork/Join源码剖析与算法解析

我们在大学算法课本上,学过的一种基本算法就是:分治。其基本思路就是:把一个大的任务分成若干个子任务,这些子任务分别计算,最后再Merge出最终结果。这个过程通常都会用到递归。

而Fork/Join其实就是一种利用多线程来实现“分治算法”的并行框架。

另外一方面,可以把Fori/Join看作一个单机版的Map/Reduce,只不过这里的并行不是多台机器并行计算,而是多个线程并行计算。

下面看2个简单例子:

例子1: 快排 我们都知道,快排有2个步骤: 第1步,拿数组的第1个元素,把元素划分成2半,左边的比该元素小,右边的比该元素大; 第2步,对左右的2个子数组,分别排序。

可以看出,这里左右2个子数组,可以相互独立的,并行计算。因此可以利用ForkJoin框架, 代码如下:

//定义一个Task,基础自RecursiveAction,实现其compute方法

class SortTask extends RecursiveAction {

final long[] array;

final int lo;

final int hi;

private int THRESHOLD = 0; //For demo only

public SortTask(long[] array) {

this.array = array;

this.lo = 0;

this.hi = array.length - 1;

}

public SortTask(long[] array, int lo, int hi) {

this.array = array;

this.lo = lo;

this.hi = hi;

}

protected void compute() {

if (hi - lo < THRESHOLD)

sequentiallySort(array, lo, hi);

else {

int pivot = partition(array, lo, hi); //划分

coInvoke(new SortTask(array, lo, pivot - 1), new SortTask(array,

pivot + 1, hi)); //递归调,左右2个子数组

}

}

private int partition(long[] array, int lo, int hi) {

long x = array[hi];

int i = lo - 1;

for (int j = lo; j < hi; j++) {

if (array[j] <= x) {

i++;

swap(array, i, j);

}

}

swap(array, i + 1, hi);

return i + 1;

}

private void swap(long[] array, int i, int j) {

if (i != j) {

long temp = array[i];

array[i] = array[j];

array[j] = temp;

}

}

private void sequentiallySort(long[] array, int lo, int hi) {

Arrays.sort(array, lo, hi + 1);

}

}

//测试函数

public void testSort() throws Exception {

ForkJoinTask sort = new SortTask(array); //1个任务

ForkJoinPool fjpool = new ForkJoinPool(); //1个ForkJoinPool

fjpool.submit(sort); //提交任务

fjpool.shutdown(); //结束。ForkJoinPool内部会开多个线程,并行上面的子任务

fjpool.awaitTermination(30, TimeUnit.SECONDS);

}

例子2: 求1到n个数的和

//定义一个Task,基础自RecursiveTask,实现其commpute方法

public class SumTask extends RecursiveTask{

private static final int THRESHOLD = 10;

private long start;

private long end;

public SumTask(long n) {

this(1,n);

}

private SumTask(long start, long end) {

this.start = start;

this.end = end;

}

@Override //有返回值

protected Long compute() {

long sum = 0;

if((end - start) <= THRESHOLD){

for(long l = start; l <= end; l++){

sum += l;

}

}else{

long mid = (start + end) >>> 1;

SumTask left = new SumTask(start, mid); //分治,递归

SumTask right = new SumTask(mid + 1, end);

left.fork();

right.fork();

sum = left.join() + right.join();

}

return sum;

}

private static final long serialVersionUID = 1L;

}

//测试函数

public void testSum() throws Exception {

SumTask sum = new SumTask(100); //1个任务

ForkJoinPool fjpool = new ForkJoinPool(); //1个ForkJoinPool

Future future = fjpool.submit(sum); //提交任务

Long r = future.get(); //获取返回值

fjpool.shutdown();

}

与ThreadPool的区别

通过上面例子,我们可以看出,它在使用上,和ThreadPool有共同的地方,也有区别点: (1) ThreadPool只有“外部任务”,也就是调用者放到队列里的任务。 ForkJoinPool有“外部任务”,还有“内部任务”,也就是任务自身在执行过程中,分裂出”子任务“,递归,再次放入队列。 (2)ForkJoinPool里面的任务通常有2类,RecusiveAction/RecusiveTask,这2个都是继承自FutureTask。在使用的时候,重写其compute算法。

工作窃取算法

上面提到,ForkJoinPool里有”外部任务“,也有“内部任务”。其中外部任务,是放在ForkJoinPool的全局队列里面,而每个Worker线程,也有一个自己的队列,用于存放内部任务。

窃取的基本思路就是:当worker自己的任务队列里面没有任务时,就去scan别的线程的队列,把别人的任务拿过来执行。

//ForkJoinPool的成员变量

ForkJoinWorkerThread[] workers; //worker thread集合

private ForkJoinTask>[] submissionQueue; //外部任务队列

private final ReentrantLock submissionLock;

//ForkJoinWorkerThread的成员变量

ForkJoinTask>[] queue; //每个worker线程自己的内部任务队列

//提交任务

public ForkJoinTask submit(ForkJoinTask task) {

if (task == null)

throw new NullPointerException();

forkOrSubmit(task);

return task;

}

private void forkOrSubmit(ForkJoinTask task) {

ForkJoinWorkerThread w;

Thread t = Thread.currentThread();

if (shutdown)

throw new RejectedExecutionException();

if ((t instanceof ForkJoinWorkerThread) && //如果当前是worker线程提交的任务,也就是worker执行过程中,分裂出来的子任务,放入worker自己的内部任务队列

(w = (ForkJoinWorkerThread)t).pool == this)

w.pushTask(task);

else

addSubmission(task); //外部任务,放入pool的全局队列

}

//worker的run方法

public void run() {

Throwable exception = null;

try {

onStart();

pool.work(this);

} catch (Throwable ex) {

exception = ex;

} finally {

onTermination(exception);

}

}

final void work(ForkJoinWorkerThread w) {

boolean swept = false; // true on empty scans

long c;

while (!w.terminate && (int)(c = ctl) >= 0) {

int a; // active count

if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)

swept = scan(w, a); //核心代码都在这个scan函数里面

else if (tryAwaitWork(w, c))

swept = false;

}

}

//scan的基本思路:从别人的任务队列里面抢,没有,再到pool的全局的任务队列里面去取。

private boolean scan(ForkJoinWorkerThread w, int a) {

int g = scanGuard;

int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;

ForkJoinWorkerThread[] ws = workers;

if (ws == null || ws.length <= m) // 过期检测

return false;

for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {

ForkJoinTask> t; ForkJoinTask>[] q; int b, i;

//随机选出一个牺牲者(工作线程)。

ForkJoinWorkerThread v = ws[k & m];

//一系列检查...

if (v != null && (b = v.queueBase) != v.queueTop &&

(q http://= v.queue) != null && (i = (q.length - 1) & b) >= 0) {

//如果这个牺牲者的任务队列中还有任务,尝试窃取这个任务。

long u = (i << ASHIFT) + ABASE;

if ((t = q[i]) != null && v.queueBase == b &&

UNSAFE.compareAndSwapObject(q, u, t, null)) {

//窃取成功后,调整queueBase

int d = (v.queueBase = b + 1) - v.queueTop;

//将牺牲者的stealHint设置为当前工作线程在pool中的下标。

v.stealHint = w.poolIndex;

if (d != 0)

signalWork(); // 如果牺牲者的任务队列还有任务,继续唤醒(或创建)线程。

w.execTask(t); //执行窃取的任务。

}

//计算出下一个随机种子。

r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);

return false; // 返回false,表示不是一个空扫描。

}

//前2*m次,随机扫描。

else if (j < 0) { // xorshift

r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;

}

//后2*m次,顺序扫描。

else

++k;

}

if (scanGuard != g) // staleness check

return false;

else {

//如果扫描完毕后没找到可窃取的任务,那么从Pool的提交任务队列中取一个任务来执行。

ForkJoinTask> t; ForkJoinTask>[] q; int b, i;

if ((b = queueBase) != queueTop &&

(q = submissionQueue) != null &&

(i = (q.length - 1) & b) >= 0) {

long u = (i << ASHIFT) + ABASE;

if ((t = q[i]) != null && queueBase == b &&

UNSAFE.compareAndSwapObject(q, u, t, null)) {

queueBase = b + 1;

w.execTask(t);

}

return false;

}

return true; // 如果所有的队列(工作线程的任务队列和pool的任务队列)都是空的,返回true。

}

}

关于ForkJoinPool/FutureTask,本文只是分析了其基本使用原理。还有很多实现细节,留待读者自己去分析。

以上就是剖析Fork join并发框架工作窃取算法的详细内容,更多关于Fork join并发框架工作窃取算法的资料请关注我们其它相关文章!

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:使用 Cilium 增强 Kubernetes 网络安全
下一篇:语音顶会 ICASSP 2022 成果分享:基于时频感知域模型的单通道语音增强算法
相关文章

 发表评论

暂时没有评论,来抢沙发吧~