linux cpu占用率如何看
228
2022-09-25
七个好用的装饰器
分享七个好用的装饰器,方便你撸代码。
1、dispach
Python 天然支持多态,但使用 dispatch 可以让你的代码更加容易阅读。
安装:
pip install multipledispatch
使用:
>>> from multipledispatch import dispatch>>> @dispatch(int, int)... def add(x, y):... return x + y>>> @dispatch(object, object)... def add(x, y):... return "%s + %s" % (x, y)>>> add(1, 2)3>>> add(1, 'hello')'1 + hello'
2、click
click 可以很方便地让你实现命令行工具。
安装:
pip install click
使用:demo2.py :
import click@click.command()@click.option('--count', default=1, help='Number of greetings.')@click.option('--name', prompt='Your name', help='The person to greet.')def hello(count, name): """Simple program that greets NAME for a total of COUNT times.""" for x in range(count): click.echo(f"Hello {name}!")if __name__ == '__main__': hello()
运行结果:
❯ python demo2.py --count=3 --name=joihHello joih!Hello joih!Hello joih!❯ python demo2.py --count=3Your name: somenzzHello somenzz!Hello somenzz!Hello somenzz!
3、celery
分布式的任务队列,非 Celery 莫属。
Celery 介绍和详细用法,可以参考前文:
开发环境下,如何通过一个命令让 fastapi 和 celery 一起工作
一文搞定 celery 任务远程调用
from celery import Celeryapp = Celery('tasks', broker='pyamqp://guest@localhost//')@app.taskdef add(x, y): return x + y
4、deprecated
这个相信大家在使用别的包时都遇到过,当要下线一个老版本的函数的时候就可以使用这个装饰器。
安装:
pip install Deprecated
使用:demo4.py
from deprecated import deprecated@deprecated ("This function is deprecated, please do not use it")def func1(): passfunc1()
运行效果如下:
❯ python demo4.pydemo4.py:6: DeprecationWarning: Call to deprecated function (or staticmethod) func1. (This function is deprecated, please do not use it) func1()
5、deco.concurrent
安装:
pip install deco
使用 DECO 就像在 Python 程序中查找或创建两个函数一样简单。我们可以用 @concurrent 装饰需要并行运行的函数,用 @synchronized 装饰调用并行函数的函数,使用举例:
from deco import concurrent, synchronized @concurrent # We add this for the concurrent functiondef process_url(url, data): #Does some work which takes a while return result@synchronized # And we add this for the function which calls the concurrent functiondef process_data_set(data): results = {} for url in urls: results[url] = process_url(url, data) return results
6、cachetools
缓存工具
安装:
pip install cachetools
使用:
from cachetools import cached, LRUCache, TTLCache# speed up calculating Fibonacci numbers with dynamic programming@cached(cache={})def fib(n): return n if n < 2 else fib(n - 1) + fib(n - 2)# cache least recently used Python Enhancement Proposals@cached(cache=LRUCache(maxsize=32))def get_pep(num): url = '% num with urllib.request.urlopen(url) as s: return s.read()# cache weather data for no longer than ten minutes@cached(cache=TTLCache(maxsize=1024, ttl=600))def get_weather(place): return owm.weather_at_place(place).get_weather()
7、retry
重试装饰器,支持各种各样的重试需求。
安装:
pip install tenacity
使用:
import randomfrom tenacity import retry@retrydef do_something_unreliable(): if random.randint(0, 10) > 1: raise IOError("Broken sauce, everything is hosed!!!111one") else: return "Awesome sauce!"@retry(stop=stop_after_attempt(7))def stop_after_7_attempts(): print("Stopping after 7 attempts") raise Exception@retry(stop=stop_after_delay(10))def stop_after_10_s(): print("Stopping after 10 seconds") raise Exception@retry(stop=(stop_after_delay(10) | stop_after_attempt(5)))def stop_after_10_s_or_5_retries(): print("Stopping after 10 seconds or 5 retries") raise Exception
最后
本文分享了七个好用的装饰器,希望对你写代码有所帮助。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~