oracle竖列的数据怎么变成一行
269
2022-09-23
Django 2.1.7 模型的关联
上一篇Django 2.1.7 模型 - 条件查询 F对象 Q对象 聚合查询讲述了关于Django模型的F对象、Q对象、聚合查询等功能。
但是没有讲到两张表的关联查询的实现,这个在模型里面该怎么处理呢?
参考文献
一台服务器对应多个中间件,相应的数据模型如下:
class ServerInfo(models.Model): server_hostname = models.CharField(max_length=20, default=None) server_intranet_ip = models.CharField(max_length=20, default=None) server_internet_ip = models.CharField(max_length=20, default=None) server_shelves_date = models.DateField(auto_now_add=True) # 数据加入时间 update_time = models.DateTimeField(auto_now=True) # 数据更新时间 is_delete = models.BooleanField(default=False) # 逻辑删除class MiddlewareInfo(models.Model): name = models.CharField(max_length=20) port = models.IntegerField() server = models.ForeignKey('ServerInfo',on_delete=models.CASCADE, default=None) shelves_date = models.DateTimeField(auto_now_add=True) # 数据加入时间 update_time = models.DateTimeField(auto_now=True) # 数据更新时间 is_delete = models.BooleanField(default=False) # 逻辑删除
可以从上面的模型看出,一对多的关系构建的关键就是MiddlewareInfo(中间件-多类)设置外键连接ServerInfo(服务器信息 - 一类)。server = models.ForeignKey('ServerInfo',on_delete=models.CASCADE, default=None)。 但是在实际使用的过程中,使用外键的话,在做一些数据处理的时候很不方便。也可以不设置一个外键,直接就单纯一个int字段来记录ServerInfo类的id也是可以的。
多对多关系
在前面篇章中,并没有设计关于多对多的关联模型,那么现在可以设计一个。
在前面已有服务器类的前提下,可以设计一个服务器用途类。 定义一个服务器用途类的话,那么一台服务器可能有多种用途,同时一种用途类型下,可能有多台服务器对应。 这种就是多对多的关系。
class ServerUsedType(models.Model): used_type = models.CharField(max_length=20,default=None)class ServerInfo(models.Model): server_hostname = models.CharField(max_length=20, default=None) server_intranet_ip = models.CharField(max_length=20, default=None) server_internet_ip = models.CharField(max_length=20, default=None) server_shelves_date = models.DateField(auto_now_add=True) # 数据加入时间 update_time = models.DateTimeField(auto_now=True) # 数据更新时间 is_delete = models.BooleanField(default=False) # 逻辑删除 server_used_type_id = models.ManyToManyField(ServerUsedType) # 通过ManyToManyField建立多对多的关系
那么这种模型多对多关系的字段通过数据迁移,会生成什么样的字段呢? 执行数据迁移,如下:
python3 manage.py makemigrationspython3 manage.py migrate
从mysql日志查看关键执行日志如下:
2019-06-14T16:54:06.348996Z 21 Query CREATE TABLE `assetinfo_serverinfo_server_used_type_id` (`id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY, `serverinfo_id` integer NOT NULL, `serverusedtype_id` integer NOT NULL)2019-06-14T16:54:06.394877Z 21 Query ALTER TABLE `assetinfo_serverinfo_server_used_type_id` ADD CONSTRAINT `assetinfo_serverinfo_serverinfo_id_b297c62e_fk_assetinfo` FOREIGN KEY (`serverinfo_id`) REFERENCES `assetinfo_serverinfo` (`id`)2019-06-14T16:54:06.441100Z 21 Query ALTER TABLE `assetinfo_serverinfo_server_used_type_id` ADD CONSTRAINT `assetinfo_serverinfo_serverusedtype_id_5551cbd5_fk_assetinfo` FOREIGN KEY (`serverusedtype_id`) REFERENCES `assetinfo_serverusedtype` (`id`)2019-06-14T16:54:06.489104Z 21 Query ALTER TABLE `assetinfo_serverinfo_server_used_type_id` ADD CONSTRAINT `assetinfo_serverinfo_ser_serverinfo_id_serverused_c12509b8_uniq` UNIQUE (`serverinfo_id`, `serverusedtype_id`)
查看mysql迁移数据之后,生成了两个表,如下:
mysql> show tables;+------------------------------------------+| Tables_in_assetinfo |+------------------------------------------+| assetinfo_middlewareinfo || assetinfo_scriptinfo || assetinfo_serverinfo || assetinfo_serverinfo_server_used_type_id || assetinfo_serverusedtype |
可以看到为了实现多对多的关系,django自动创建了一张中间表assetinfo_serverinfo_server_used_type_id,通过中间表绑定assetinfo_serverinfo和assetinfo_serverusedtype表的关系。 查看这三张表的表结构如下:
mysql> desc assetinfo_serverinfo;+---------------------+-------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+---------------------+-------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || server_hostname | varchar(20) | NO | | NULL | || server_intranet_ip | varchar(20) | NO | | NULL | || server_internet_ip | varchar(20) | NO | | NULL | || server_shelves_date | date | NO | | NULL | || is_delete | tinyint(1) | NO | | NULL | || update_time | datetime(6) | NO | | NULL | |+---------------------+-------------+------+-----+---------+----------------+7 rows in set (0.00 sec)mysql> desc assetinfo_serverinfo_server_used_type_id;+-------------------+---------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+-------------------+---------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || serverinfo_id | int(11) | NO | MUL | NULL | || serverusedtype_id | int(11) | NO | MUL | NULL | |+-------------------+---------+------+-----+---------+----------------+3 rows in set (0.00 sec)mysql> desc assetinfo_serverusedtype;+-----------+-------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+-----------+-------------+------+-----+---------+----------------+| id | int(11) | NO | PRI | NULL | auto_increment || used_type | varchar(20) | NO | | NULL | |+-----------+-------------+------+-----+---------+----------------+2 rows in set (0.00 sec)mysql>
在知道Django模型如何实现多对多的关联之后,下面来看看怎么关联查询。
关联查询
Django中也能实现类似于join查询。
通过对象执行关联查询
首先写一个一对多的关联查询SQL,如下:select s.server_hostname,m.name,s.id,m.server_id from assetinfo_serverinfo as s left join assetinfo_middlewareinfo as m on s.id = m.server_id where s.id = 1;
mysql> select s.server_hostname,m.name,s.id,m.server_id from assetinfo_serverinfo as s left join assetinfo_middlewareinfo as m on s.id = m.server_id where s.id = 1;+-----------------+-----------+----+-----------+| server_hostname | name | id | server_id |+-----------------+-----------+----+-----------+| 测试服务器 | memcached | 1 | 1 || 测试服务器 | redis | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | mongodb | 1 | 1 || 测试服务器 | test | 1 | 1 || 测试服务器 | test | 1 | 1 |+-----------------+-----------+----+-----------+12 rows in set (0.00 sec)mysql>
那么模型类该怎么实现这个查询呢?
由一到多的访问语法:一对应的模型类对象.多对应的模型类名小写_set
In [1]: from assetinfo.models import ServerInfo,MiddlewareInfo# 设置查询 id = 1 的 服务器信息In [2]: s = ServerInfo.objects.get(id=1)# 关联查询相关的中间件信息In [3]: s.middlewareinfo_set.all()Out[3]:
对应的SQL如下:SELECTassetinfo_middlewareinfo.id,assetinfo_middlewareinfo.name,assetinfo_middlewareinfo.port,assetinfo_middlewareinfo.server_id,assetinfo_middlewareinfo.shelves_date,assetinfo_middlewareinfo.update_time,assetinfo_middlewareinfo.is_deleteFROMassetinfo_middlewareinfoWHEREassetinfo_middlewareinfo.server_id= 1 LIMIT 21;
mysql> SELECT `assetinfo_middlewareinfo`.`id`, `assetinfo_middlewareinfo`.`name`, `assetinfo_middlewareinfo`.`port`, `assetinfo_middlewareinfo`.`server_id`, `assetinfo_middlewareinfo`.`shelves_date`, `assetinfo_middlewareinfo`.`update_time`, `assetinfo_middlewareinfo`.`is_delete` FROM `assetinfo_middlewareinfo` WHERE `assetinfo_middlewareinfo`.`server_id` = 1 LIMIT 21;+----+-----------+-------+-----------+----------------------------+----------------------------+-----------+| id | name | port | server_id | shelves_date | update_time | is_delete |+----+-----------+-------+-----------+----------------------------+----------------------------+-----------+| 1 | memcached | 11211 | 1 | 2019-06-10 14:56:46.150556 | 2019-06-10 17:37:51.365155 | 1 || 2 | redis | 6379 | 1 | 2019-06-10 14:56:46.150556 | 2019-06-10 17:38:20.712862 | 1 || 5 | test | 123 | 1 | 2019-06-10 17:05:16.632773 | 2019-06-10 17:05:16.632773 | 1 || 6 | test | 123 | 1 | 2019-06-10 17:06:20.120658 | 2019-06-10 17:06:20.121656 | 1 || 7 | test | 123 | 1 | 2019-06-10 17:06:43.193412 | 2019-06-10 17:06:43.193412 | 1 || 8 | test | 123 | 1 | 2019-06-10 17:07:03.747395 | 2019-06-10 17:07:03.747395 | 1 || 9 | test | 123 | 1 | 2019-06-10 17:08:43.372097 | 2019-06-10 17:08:43.372097 | 1 || 10 | test | 123 | 1 | 2019-06-10 17:09:37.877019 | 2019-06-10 17:09:37.877019 | 1 || 11 | test | 123 | 1 | 2019-06-10 17:11:45.403627 | 2019-06-10 17:11:45.403627 | 1 || 14 | mongodb | 3306 | 1 | 2019-06-11 14:01:24.003175 | 2019-06-11 14:06:14.525648 | 1 || 15 | test | 123 | 1 | 2019-06-11 14:04:10.576241 | 2019-06-11 14:04:10.576241 | 0 || 16 | test | 3306 | 1 | 2019-06-11 14:06:05.608006 | 2019-06-11 14:06:05.608006 | 0 |+----+-----------+-------+-----------+----------------------------+----------------------------+-----------+12 rows in set (0.00 sec)mysql>
可以结果看出,其实Django模型的关联查询,也只是查询多类一方的单独数据而已。
上面是一到多的查询方式,下面再来一个多到一的查询方式,如下: 查看中间件信息id = 1 对应的 服务器信息
# 首先查询中间件的数据In [4]: m = MiddlewareInfo.objects.get(id=1)# 根据中间件的查询结果,再进行服务器信息查询In [13]: s = ServerInfo.objects.filter(id = m.server_id )# 打印查询出来的服务器名称In [14]: for item in s: ...: print(item.server_hostname) ...: 测试服务器
上面查询主键编号的时候都是使用id,还可以使用pk来进行查询,如下:
In [15]: ServerInfo.objects.get(pk=1)Out[15]:
这两个查询的结果是一样的。
上面就是使用对象来实现的关联查询。那么有没有更加一句话能搞定的关联查询呢?
通过模型类执行关联查询
由多模型类条件查询一模型类数据:
语法如下:
关联模型类名小写__属性名__条件运算符=值
如果没有"__运算符"部分,表示等于,结果和sql中的inner join相同。
例:查询服务器信息,要求服务器中中间件的name包含'redis'。
In [17]: result = ServerInfo.objects.filter(middlewareinfo__name__contains='redis')In [18]: print(result)
对应的SQL如下:
mysql> SELECT `assetinfo_serverinfo`.`id`, `assetinfo_serverinfo`.`server_hostname`, `assetinfo_serverinfo`.`server_intranet_ip`, `assetinfo_serverinfo`.`server_internet_ip`, `assetinfo_serverinfo`.`server_shelves_date`, `assetinfo_serverinfo`.`update_time`, `assetinfo_serverinfo`.`is_delete` FROM `assetinfo_serverinfo` INNER JOIN `assetinfo_middlewareinfo` ON (`assetinfo_serverinfo`.`id` = `assetinfo_middlewareinfo`.`server_id`) WHERE `assetinfo_middlewareinfo`.`name` LIKE BINARY '%redis%' LIMIT 21 -> ;+----+-----------------+--------------------+--------------------+---------------------+----------------------------+-----------+| id | server_hostname | server_intranet_ip | server_internet_ip | server_shelves_date | update_time | is_delete |+----+-----------------+--------------------+--------------------+---------------------+----------------------------+-----------+| 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 2019-06-10 14:56:46.425830 | 0 |+----+-----------------+--------------------+--------------------+---------------------+----------------------------+-----------+1 row in set (0.00 sec)mysql>
由一模型类条件查询多模型类数据: 语法如下:
一模型类关联属性名__一模型类属性名__条件运算符=值
例:查询服务器为“测试服务器”的所有中间件信息。
mysql> select * from assetinfo_middlewareinfo as m join assetinfo_serverinfo as s on m.server_id = s.id where s.server_hostname = '测试服务器';+----+-----------+-------+-----------+-----------+----------------------------+----------------------------+----+-----------------+--------------------+--------------------+---------------------+-----------+----------------------------+| id | name | port | server_id | is_delete | shelves_date | update_time | id | server_hostname | server_intranet_ip | server_internet_ip | server_shelves_date | is_delete | update_time |+----+-----------+-------+-----------+-----------+----------------------------+----------------------------+----+-----------------+--------------------+--------------------+---------------------+-----------+----------------------------+| 1 | memcached | 11211 | 1 | 1 | 2019-06-10 14:56:46.150556 | 2019-06-10 17:37:51.365155 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 2 | redis | 6379 | 1 | 1 | 2019-06-10 14:56:46.150556 | 2019-06-10 17:38:20.712862 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 5 | test | 123 | 1 | 1 | 2019-06-10 17:05:16.632773 | 2019-06-10 17:05:16.632773 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 6 | test | 123 | 1 | 1 | 2019-06-10 17:06:20.120658 | 2019-06-10 17:06:20.121656 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 7 | test | 123 | 1 | 1 | 2019-06-10 17:06:43.193412 | 2019-06-10 17:06:43.193412 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 8 | test | 123 | 1 | 1 | 2019-06-10 17:07:03.747395 | 2019-06-10 17:07:03.747395 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 9 | test | 123 | 1 | 1 | 2019-06-10 17:08:43.372097 | 2019-06-10 17:08:43.372097 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 10 | test | 123 | 1 | 1 | 2019-06-10 17:09:37.877019 | 2019-06-10 17:09:37.877019 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 11 | test | 123 | 1 | 1 | 2019-06-10 17:11:45.403627 | 2019-06-10 17:11:45.403627 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 14 | mongodb | 3306 | 1 | 1 | 2019-06-11 14:01:24.003175 | 2019-06-11 14:06:14.525648 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 15 | test | 123 | 1 | 0 | 2019-06-11 14:04:10.576241 | 2019-06-11 14:04:10.576241 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 || 16 | test | 3306 | 1 | 0 | 2019-06-11 14:06:05.608006 | 2019-06-11 14:06:05.608006 | 1 | 测试服务器 | 172.16.5.1 | 223.5.5.5 | 2019-06-10 | 0 | 2019-06-10 14:56:46.425830 |+----+-----------+-------+-----------+-----------+----------------------------+----------------------------+----+-----------------+--------------------+--------------------+---------------------+-----------+----------------------------+12 rows in set (0.00 sec)mysql>
那么模型该怎么写呢?
In [1]: from assetinfo.models import ServerInfo,MiddlewareInfoIn [2]: MiddlewareInfo.objects.filter(server_id__server_hostname='测试服务器')Out[2]:
对应执行的SQL如下:
mysql> SELECT `assetinfo_middlewareinfo`.`id`, `assetinfo_middlewareinfo`.`name`, `assetinfo_middlewareinfo`.`port`, `assetinfo_middlewareinfo`.`server_id`, `assetinfo_middlewareinfo`.`shelves_date`, `assetinfo_middlewareinfo`.`update_time`, `assetinfo_middlewareinfo`.`is_delete` FROM `assetinfo_middlewareinfo` INNER JOIN `assetinfo_serverinfo` ON (`assetinfo_middlewareinfo`.`server_id` = `assetinfo_serverinfo`.`id`) WHERE `assetinfo_serverinfo`.`server_hostname` = '测试服务器' LIMIT 21 -> ;+----+-----------+-------+-----------+----------------------------+----------------------------+-----------+| id | name | port | server_id | shelves_date | update_time | is_delete |+----+-----------+-------+-----------+----------------------------+----------------------------+-----------+| 1 | memcached | 11211 | 1 | 2019-06-10 14:56:46.150556 | 2019-06-10 17:37:51.365155 | 1 || 2 | redis | 6379 | 1 | 2019-06-10 14:56:46.150556 | 2019-06-10 17:38:20.712862 | 1 || 5 | test | 123 | 1 | 2019-06-10 17:05:16.632773 | 2019-06-10 17:05:16.632773 | 1 || 6 | test | 123 | 1 | 2019-06-10 17:06:20.120658 | 2019-06-10 17:06:20.121656 | 1 || 7 | test | 123 | 1 | 2019-06-10 17:06:43.193412 | 2019-06-10 17:06:43.193412 | 1 || 8 | test | 123 | 1 | 2019-06-10 17:07:03.747395 | 2019-06-10 17:07:03.747395 | 1 || 9 | test | 123 | 1 | 2019-06-10 17:08:43.372097 | 2019-06-10 17:08:43.372097 | 1 || 10 | test | 123 | 1 | 2019-06-10 17:09:37.877019 | 2019-06-10 17:09:37.877019 | 1 || 11 | test | 123 | 1 | 2019-06-10 17:11:45.403627 | 2019-06-10 17:11:45.403627 | 1 || 14 | mongodb | 3306 | 1 | 2019-06-11 14:01:24.003175 | 2019-06-11 14:06:14.525648 | 1 || 15 | test | 123 | 1 | 2019-06-11 14:04:10.576241 | 2019-06-11 14:04:10.576241 | 0 || 16 | test | 3306 | 1 | 2019-06-11 14:06:05.608006 | 2019-06-11 14:06:05.608006 | 0 |+----+-----------+-------+-----------+----------------------------+----------------------------+-----------+12 rows in set (0.00 sec)mysql>
自关联
对于地区信息、分类信息等数据,表结构非常类似,每个表的数据量十分有限,为了充分利用数据表的大量数据存储功能,可以设计成一张表,内部的关系字段指向本表的主键,这就是自关联的表结构。
示例数据如下:
创建表的SQL:
CREATE TABLE `AREA` ( `ID` int(11) NOT NULL, `PARENT_ID` int(11) NOT NULL DEFAULT '0' COMMENT '父级ID', `NAME` varchar(50) NOT NULL COMMENT '名称', `SHORT_NAME` varchar(50) NOT NULL COMMENT '简称', `LONGITUDE` float NOT NULL DEFAULT '0' COMMENT '经度', `LATITUDE` float NOT NULL DEFAULT '0' COMMENT '纬度', `LEVEL` int(1) NOT NULL COMMENT '等级(1省/直辖市,2地级市,3区县,4镇/街道)', `SORT` int(3) NOT NULL DEFAULT '1' COMMENT '排序', `STATUS` int(1) NOT NULL DEFAULT '0' COMMENT '状态(0禁用/1启用)', PRIMARY KEY (`ID`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8
那么为了更好实验,先来写上这个表结构的模型类,如下:
# 全国区域信息class AREA(models.Model): ID = models.AutoField(primary_key=True,db_column='ID',auto_created=True, serialize=False, verbose_name='ID') PARENT_ID = models.ForeignKey('self', on_delete=models.CASCADE, null=True, blank=True,db_column='PARENT_ID') # 父级id NAME = models.CharField(max_length=50,default=None,db_column='NAME') # 名称 SHORT_NAME = models.CharField(max_length=50,default=None) # 简称 LONGITUDE = models.FloatField(default=0) # 经度 LATITUDE = models.FloatField(default=0) # 纬度 LEVEL = models.IntegerField(default=1)# 等级 SORT = models.IntegerField(default=1) # 排序 STATUS = models.IntegerField(default=1) # 状态 class Meta: db_table = 'AREA' # 设置表名为 AREA
执行数据迁移:
python3 manage.py makemigrationspython3 manage.py migrate
到mysql中查看创建的表结构,如下:
mysql> desc AREA;+------------+-------------+------+-----+---------+----------------+| Field | Type | Null | Key | Default | Extra |+------------+-------------+------+-----+---------+----------------+| ID | int(11) | NO | PRI | NULL | auto_increment || Name | varchar(50) | NO | | NULL | || SHORT_NAME | varchar(50) | NO | | NULL | || LONGITUDE | double | NO | | NULL | || LATITUDE | double | NO | | NULL | || LEVEL | int(11) | NO | | NULL | || SORT | int(11) | NO | | NULL | || STATUS | int(11) | NO | | NULL | || PARENT_ID | int(11) | YES | MUL | NULL | |+------------+-------------+------+-----+---------+----------------+9 rows in set (0.00 sec)mysql>
导入几条数据,如下:
In [1]: from assetinfo.models import AREAIn [2]: area1 = AREA()In [3]: area2 = AREA()In [4]: area1.NAME = '广东省'In [6]: area1.SHORT_NAME = '广东'In [7]: area1.save()In [8]: area2.NAME = '深圳市'In [9]: area2.SHORT_NAME = '深圳'In [10]: area2.PARENT_ID = area1In [11]: area2.save()In [13]: area3.NAME = '广州市'In [14]: area3.SHORT_NAME = '广州'In [15]: area3.PARENT_ID = area1In [16]: area3.save()
到mysql中查询数据如下:
mysql> select * from AREA;+----+------------+-----------+----------+-------+------+--------+-----------+-----------+| ID | SHORT_NAME | LONGITUDE | LATITUDE | LEVEL | SORT | STATUS | PARENT_ID | NAME |+----+------------+-----------+----------+-------+------+--------+-----------+-----------+| 1 | 广东 | 0 | 0 | 1 | 1 | 1 | NULL | 广东省 || 2 | 深圳 | 0 | 0 | 1 | 1 | 1 | 1 | 深圳市 || 3 | 广州 | 0 | 0 | 1 | 1 | 1 | 1 | 广州市 |+----+------------+-----------+----------+-------+------+--------+-----------+-----------+3 rows in set (0.00 sec)mysql>
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~