c语言sscanf函数的用法是什么
240
2022-09-19
HDU 2199 Can you solve this equation?(牛顿迭代法)
【链接】:click here~~ 【描述】: Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100; Now please try your lucky. Input The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10); Output For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100. Sample Input 2 100 -4 Sample Output 1.6152 No solution! 【思路】:今天复习了一下牛顿迭代法: 牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。 牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根 附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。
设r是f(x) = 0的根,选取x0作为r初始近似值, 过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f’(x0)(x-x0), 求出L与x轴交点的横坐标 x1 = x0-f(x0)/f’(x0), 称x1为r的一次近似值。 过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f’(x1), 称x2为r的二次近似值。 重复以上过程,得r的近似值序列, 其中x(n+1)=x(n)-f(x(n)) /f’(x(n)), 称为r的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。 把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f’(x0)+(x-x0)^2*f”(x0)/2! +… 取其线性部分,作为非线性方程f(x)=0的近似方程, 即泰勒展开的前两项,则有f(x0)+f’(x0)(x-x0)=f(x)=0 设f’(x0)≠0 则其解为x1=x0-f(x0)/f’(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f’(x(n))。 【代码】:
/***********************牛顿迭代解方程 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == YAuthor:herongweiTime:2017/3/11 23:00language:C++牛顿迭代法***********************/#pragma comment(linker,"/STACK:102400000,102400000")#include
参考博客: 完~
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~