c语言sscanf函数的用法是什么
266
2022-09-15
python scikit-learn SelfTrainingClassifier实践
最近用scikit-learn试了一下半监督学习,我这里分享一下我写的代码: 我的数据集的地址展示:
['./FeatureLearningRotNet/feat/train/disgust/Training_73540712.jpg.npy', './FeatureLearningRotNet/feat/train/disgust/Training_82025016.jpg.npy', './FeatureLearningRotNet/feat/train/disgust/Training_98173595.jpg.npy', './FeatureLearningRotNet/feat/train/disgust/Training_96698508.jpg.npy', './FeatureLearningRotNet/feat/train/disgust/Training_76134387.jpg.npy']
训练
import numpy as npfrom sklearn import datasetsfrom sklearn.semi_supervised import SelfTrainingClassifierfrom sklearn.svm import SVCimport globfrom tqdm import tqdm data_dir='./FeatureLearningRotNet/feat/train/*/*.npy'file_names=glob.glob(data_dir)classes=['happy','fear','disgust','angry','neutral','sad','surprise']def load_feat(file_name): data=np.load(file_name) d1=np.mean(data,axis=(1,2)) return d1.flatten()feats=[load_feat(item) for item in file_names]labels=[]for item in tqdm(file_names): label=item.split('/') label=label[-2] idx=classes.index(label) labels.append(idx)labels=np.array(labels)train_data=np.array(feats)rng = np.random.RandomState(42)random_unlabeled_points = rng.rand(len(feats)) < 0.3labels[random_unlabeled_points] = -1svc = SVC(probability=True, gamma="auto")self_training_model = SelfTrainingClassifier(svc)self_training_model.fit(train_data, labels)
测试
test_data_dir='./FeatureLearningRotNet/feat/test/*/*.npy'test_file_names=glob.glob(test_data_dir)test_feats=[load_feat(item) for item in test_file_names]test_labels=[classes.index(item.split('/')[-2]) for item in test_file_names]res=self_training_model.predict(test_feats)count=0for y_pred,y_true in zip(res,test_labels): if(y_pred==y_true): count+=1 accuracy=count/len(test_labels)print('Accuracy: {}%'.format(round(accuracy * 100, 2)))
参考文献
sklearn.semi_supervised.SelfTrainingClassifier
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~