1740: 圆桌问题——最大流
题意:
假设有来自n 个不同单位的代表参加一次国际会议。每个单位的代表数分别为 ri,i=1,2,...,n 。会议餐厅共有m张餐桌,每张餐桌可容纳ci(i=1,2, ,m) 个代表就餐。 为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐。试设计一个算法, 给出满足要求的代表就餐方案。 编程任务: 对于给定的代表数和餐桌数以及餐桌容量,编程计算满足要求的代表就餐方案。
思路:
随便建图跑个最大流就可以了,水题
#include #include #include #include #include #include #include using namespace std;const int maxn = 1000;const int INF = 0x3f3f3f3f;struct Edge { int from, to, cap, flow;};struct Dinic { int s, t; vector edges; vector G[maxn]; bool vis[maxn]; int d[maxn]; int cur[maxn]; void init() { edges.clear(); for (int i = 0; i < maxn; i++) G[i].clear(); } void addedge(int from, int to, int cap) { edges.push_back(Edge{from, to, cap, 0}); edges.push_back(Edge{to, from, 0, 0}); int m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool bfs() { memset(vis, 0, sizeof(vis)); queue q; q.push(s); d[s] = 0; vis[s] = 1; while (!q.empty()) { int x = q.front(); q.pop(); for (int i = 0; i < G[x].size(); i++) { Edge &e = edges[G[x][i]]; if (!vis[e.to] && e.cap > e.flow) { vis[e.to] = 1; d[e.to] = d[x] + 1; q.push(e.to); } } } return vis[t]; } int dfs(int x, int a) { if (x == t || a == 0) return a; int flow = 0, f; for (int &i = cur[x]; i < G[x].size(); i++) { Edge &e = edges[G[x][i]]; if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0) { e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if (a == 0) break; } } return flow; } int maxflow(int s, int t) { this->s = s, this->t = t; int flow = 0; while (bfs()) { memset(cur, 0, sizeof(cur)); flow += dfs(s, INF); } return flow; }}ac;int r[maxn], c[maxn];vector G[maxn];int main() { int m, n; scanf("%d%d", &m, &n); for (int i = 1; i <= m; i++) scanf("%d", &r[i]); for (int i = 1; i <= n; i++) scanf("%d", &c[i]); int s = 0, t = n + m + 1; int sum = 0; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { ac.addedge(i, j+m, 1); } } for (int i = 1; i <= m; i++) { ac.addedge(s, i, r[i]); sum += r[i]; } for (int i = 1; i <= n; i++) { ac.addedge(i+m, t, c[i]); } int ans = ac.maxflow(s, t); if (sum == ans) { printf("1\n"); for (int i = 0; i < n*m; i++) { if (ac.edges[i<<1].flow == 1) { int u = ac.edges[i<<1].from, v = ac.edges[i<<1].to; G[u].push_back(v-m); } } for (int i = 1; i <= m; i++) { for (int j = 0; j < G[i].size(); j++) printf("%d ", G[i][j]); printf("\n"); } } else { printf("0\n"); } return 0;}
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~