java系统找不到指定文件怎么解决
423
2022-09-08
Prometheus监控Harbor(二进制版)
在之前的文章中分别介绍了harbor基于离线安装的高可用汲取设计和部署。那么,如果我们的harbor服务主机或者harbor服务及组件出现异常,我们该如何快速处理呢?
Harbor v2.2及以上版本支持配置Prometheus监控Harbor,所以你的harbor版本必须要大于2.2。
本篇文章以二进制的方式简单的部署Prometheus相关服务,可以帮助你快速的的实现Prometheus对harbor的监控。
一、部署说明
在harbor服务主机上部署:
prometheus node-exporter grafana alertmanager
harbor版本:2.4.2\主机:192.168.2.22
二、Harbor启用metrics服务
2.1 停止Harbor服务
$ cd /app/harbor $ docker-compose down
2.2 修改harbor.yml配置
修改harbor的配置文件中metrics参数,启用harbor-exporter组件。
$ cat harbor.yml ### metrics配置部分 metric: enabled: true #是否启用,需要修改为true(启用) port: 9099 #默认的端口为9090,与prometheus的端口会冲突(所以需要修改下) path: /metrics
对harbor不熟悉的建议对配置文件备份下!
2.3 配置注入组件
$ ./prepre
2.4 install安装harbor
$ ./install.sh --with-notary --with-trivy --with-chartmuseum $ docker-compose ps NAME COMMAND SERVICE STATUS PORTS chartmuseum "./docker-entrypoint…" chartmuseum running (healthy) harbor-core "/harbor/entrypoint.…" core running (healthy) harbor-db "/docker-entrypoint.…" postgresql running (healthy) harbor-exporter "/harbor/entrypoint.…" exporter running
可以看到多了harbor-exporter组件。
三、Harbor指标说明
在前面启用了harbor-exporter监控组件后,可以通过curl命令去查看harbor暴露了哪些指标。
harbor暴露了以下4个关键组件的指标数据。
3.1 harbor-exporter组件指标
exporter组件指标与Harbor 实例配置相关,并从 Harbor 数据库中收集一些数据。 指标可在<harbor_instance>:<metrics_port>/<metrics_path>查看
$ curl 采集了公共和私人项目总共数量。
$ curl | grep harbor_project_total # HELP harbor_project_total Total projects number # TYPE harbor_project_total gauge harbor_project_total{public="true"} 1 # 公共项目的数量为“1” harbor_project_total{public="false"} 1 #私有项目的数量
2)harbor_project_repo_total
项目(Project)中的存储库总数。
$ curl | grep harbor_project_repo_total # HELP harbor_project_repo_total Total project repos number # TYPE harbor_project_repo_total gauge harbor_project_repo_total{project_name="library",public="true"} 0
3)harbor_project_member_total
项目中的成员总数
$ curl | grep harbor_project_member_total # HELP harbor_project_member_total Total members number of a project # TYPE harbor_project_member_total gauge harbor_project_member_total{project_name="library"} 1 #项目library下有“1”个用户
4)harbor_project_quota_usage_byte
一个项目的总使用资源
$ curl | grep harbor_project_quota_usage_byte # HELP harbor_project_quota_usage_byte The used resource of a project # TYPE harbor_project_quota_usage_byte gauge harbor_project_quota_usage_byte{project_name="library"} 0
5)harbor_project_quota_byte
项目中设置的配额
$ curl | grep harbor_project_quota_byte # HELP harbor_project_quota_byte The quota of a project # TYPE harbor_project_quota_byte gauge harbor_project_quota_byte{project_name="library"} -1 #-1 表示不限制
6)harbor_artifact_pulled
项目中镜像拉取的总数
$ curl | grep harbor_artifact_pulled # HELP harbor_artifact_pulled The pull number of an artifact # TYPE harbor_artifact_pulled gauge harbor_artifact_pulled{project_name="library"} 0
7)harbor_project_artifact_total
项目中的工件类型总数,artifact_type , project_name, public ( true, false)
$ curl | grep harbor_project_artifact_total
8)harbor_health
Harbor状态
$ curl | grep harbor_health # HELP harbor_health Running status of Harbor # TYPE harbor_health gauge harbor_health 1 #1表示正常,0表示异常
9)harbor_system_info
Harbor 实例的信息,auth_mode ( db_auth, ldap_auth, uaa_auth, oidc_auth),harbor_version, self_registration( true, false)
$ curl | grep harbor_system_info # HELP harbor_system_info Information of Harbor system # TYPE harbor_system_info gauge harbor_system_info{auth_mode="db_auth",harbor_version="v2.4.2-ef2e2e56",self_registration="false"} 1
10)harbor_up
Harbor组件运行状态,组件 ( chartmuseum, core, database, jobservice, portal, redis, registry, registryctl, trivy)
$ curl | grep harbor_up harbor_up Running status of harbor component # TYPE harbor_up gauge harbor_up{component="chartmuseum"} 1 harbor_up{component="core"} 1 harbor_up{component="database"} 1 harbor_up{component="jobservice"} 1 harbor_up{component="portal"} 1 harbor_up{component="redis"} 1 harbor_up{component="registry"} 1 harbor_up{component="registryctl"} 1 harbor_up{component="trivy"} 1 #Trivy扫描器运行状态
11)harbor_task_queue_size
队列中每种类型的任务总数,
$ curl | grep harbor_task_queue_size # HELP harbor_task_queue_size Total number of tasks # TYPE harbor_task_queue_size gauge harbor_task_queue_size{type="DEMO"} 0 harbor_task_queue_size{type="GARBAGE_COLLECTION"} 0 harbor_task_queue_size{type="IMAGE_GC"} 0 harbor_task_queue_size{type="IMAGE_REPLICATE"} 0 harbor_task_queue_size{type="IMAGE_SCAN"} 0 harbor_task_queue_size{type="IMAGE_SCAN_ALL"} 0 harbor_task_queue_size{type="P2P_PREHEAT"} 0 harbor_task_queue_size{type="REPLICATION"} 0 harbor_task_queue_size{type="RETENTION"} 0 harbor_task_queue_size{type="SCHEDULER"} 0 harbor_task_queue_size{type="SLACK"} 0 harbor_task_queue_size{type="WEBHOOK"} 0
12)harbor_task_queue_latency
多久前要处理的下一个作业按类型排入队列
$ curl | grep harbor_task_queue_latency # HELP harbor_task_queue_latency how long ago the next job to be processed was enqueued # TYPE harbor_task_queue_latency gauge harbor_task_queue_latency{type="DEMO"} 0 harbor_task_queue_latency{type="GARBAGE_COLLECTION"} 0 harbor_task_queue_latency{type="IMAGE_GC"} 0 harbor_task_queue_latency{type="IMAGE_REPLICATE"} 0 harbor_task_queue_latency{type="IMAGE_SCAN"} 0 harbor_task_queue_latency{type="IMAGE_SCAN_ALL"} 0 harbor_task_queue_latency{type="P2P_PREHEAT"} 0 harbor_task_queue_latency{type="REPLICATION"} 0 harbor_task_queue_latency{type="RETENTION"} 0 harbor_task_queue_latency{type="SCHEDULER"} 0 harbor_task_queue_latency{type="SLACK"} 0 harbor_task_queue_latency{type="WEBHOOK"} 0
13)harbor_task_scheduled_total
计划任务数
$ curl | grep harbor_task_scheduled_total # HELP harbor_task_scheduled_total total number of scheduled job # TYPE harbor_task_scheduled_total gauge harbor_task_scheduled_total 0
14)harbor_task_concurrency
池(Total)上每种类型的并发任务总数
$ curl | grep harbor_task_concurrency harbor_task_concurrency{pool="d4053262b74f0a7b83bc6add",type="GARBAGE_COLLECTION"} 0
3.2 harbor-core组件指标
以下是从 Harbor core组件中提取的指标,获取格式:
<harbor_instance>:<metrics_port>/<metrics_path>?comp=core.
1)harbor_core_API operationId中的值。一些遗留端点没有,因此标签值为)operationId``unknown
harbor-core组件的指标
$ curl | grep harbor_core_http_inflight_requests # HELP harbor_core_The total number of requests # TYPE harbor_core_gauge harbor_core_0
2)harbor_core_ 请求的持续时间,
方法 ( GET, POST, HEAD, PATCH, PUT), 操作 ( Harbor APIoperationId中的 值。一些遗留端点没有, 所以标签值为), 分位数operationId``unknown
$ curl | grep harbor_core_http_request_duration_seconds # HELP harbor_core_The time duration of the requests # TYPE harbor_core_summary harbor_core_0.001797115 harbor_core_0.010445204 harbor_core_0.010445204
3)harbor_core_ 请求总数
方法(GET, POST, HEAD, PATCH, PUT),操作([Harbor API operationId中的 值。一些遗留端点没有,因此标签值为)operationId``unknown
$ curl | grep harbor_core_http_request_total # HELP harbor_core_The total number of requests # TYPE harbor_core_counter harbor_core_14 harbor_core_1 harbor_core_176 harbor_core_14
3.3 registry 组件指标
注册表,以下是从 Docker 发行版中提取的指标,查看指标方式:
<harbor_instance>:<metrics_port>/<metrics_path>?comp=registry.
1)registry_HTTP 请求,处理程序
$ curl | grep registry_http_in_flight_requests # HELP registry_The in-flight HTTP requests # TYPE registry_gauge registry_0 registry_0 registry_0 registry_0 registry_0 registry_0 registry_0
2)registry_ HTTP 请求延迟(以秒为单位),处理程序、方法( ,,,, GET) POST,文件HEADPATCHPUT
$ curl | grep registry_请求大小(以字节为单位)。
$ curl | grep registry_jobservice组件指标
以下是从 Harbor Jobservice 提取的指标,
可在<harbor_instance>:<metrics_port>/<metrics_path>?comp=jobservice.查看
1)harbor_jobservice_info
Jobservice的信息,
$ curl | grep harbor_jobservice_info # HELP harbor_jobservice_info the information of jobservice # TYPE harbor_jobservice_info gauge harbor_jobservice_info{node="f47de52e23b7:172.18.0.11",pool="35f1301b0e261d18fac7ba41",workers="10"} 1
2)harbor_jobservice_task_total
每个作业类型处理的任务数
$ curl | grep harbor_jobservice_task_tota
3)harbor_jobservice_task_process_time_seconds
任务处理时间的持续时间,即任务从开始执行到任务结束用了多少时间。
$ curl | grep harbor_jobservice_task_process_time_seconds
四、部署Prometheus Server(二进制)
4.1 创建安装目录
$ mkdir /etc/prometheus
4.2 下载安装包
$ wget -c $ tar zxvf prometheus-2.36.2.linux-amd64.tar.gz -C /etc/prometheus $ cp prometheus-2.36.2.linux-amd64/{prometheus,promtool} /usr/local/bin/ $ prometheus --version #查看版本 prometheus, version 2.36.2 (branch: HEAD, revision: d7e7b8e04b5ecdc1dd153534ba376a622b72741b) build user: root@f051ce0d6050 build date: 20220620-13:21:35 go version: go1.18.3 platform: linux/amd64
4.3 修改配置文件
在prometheus的配置文件中指定获取harbor采集的指标数据。
$ cp prometheus-2.36.2.linux-amd64/prometheus.yml /etc/prometheus/
$ cat <
4.4 语法检查
检测配置文件的语法是否正确!
$ promtool check config /etc/prometheus/prometheus.yml Checking /etc/prometheus/prometheus.yml SUCCESS: /etc/prometheus/prometheus.yml is valid prometheus config file syntax Checking /etc/prometheus/rules.yml SUCCESS: 6 rules found
4.5 创建服务启动文件
$ cat <
4.6 启动服务
$ systemctl daemon-reload $ systemctl enable --now prometheus.service $ systemctl status prometheus.service
4.7 浏览器访问Prometheus UI
在浏览器地址栏输入主机IP:9090访问Prometheus UI 管理界面。
五、部署node-exporter
node-exporter服务可采集主机的cpu、内存、磁盘等资源指标。
5.1 下载安装包
$ wget https://github.com/prometheus/node_exporter/releases/download/v1.2.2/node_exporter-1.2.2.linux-amd64.tar.gz $ tar zxvf node_exporter-1.2.2.linux-amd64.tar.gz $ cp node_exporter-1.2.2.linux-amd64/node_exporter /usr/local/bin/ $ node_exporter --version node_exporter, version 1.2.2 (branch: HEAD, revision: 26645363b486e12be40af7ce4fc91e731a33104e) build user: root@b9cb4aa2eb17 build date: 20210806-13:44:18 go version: go1.16.7 platform: linux/amd64
5.2 创建服务启动文件
$ cat <
5.3 启动服务
$ systemctl daemon-reload $ systemctl enable --now node-exporter.service $ systemctl status node-exporter.service $ ss -ntulp | grep node_exporter tcp LISTEN 0 128 :::9100 :::* users:(("node_exporter",pid=36218,fd=3)
5.4 查看node指标
通过curl获取node-exporter服务采集到的监控数据。
$ curl v8.4.4服务。
6.1 下载安装包
$ wget -c $ tar zxvf grafana-enterprise-8.4.4.linux-amd64.tar.gz -C /etc/ $ mv /etc/grafana-8.4.4 /etc/grafana $ cp -a /etc/grafana/bin/{grafana-cli,grafana-server} /usr/local/bin/ #安装依赖包 $ yum install -y fontpackages-filesystem.noarch libXfont libfontenc lyx-fonts.noarch xorg-x11-font-utils
6.2 安装插件
安装grafana时钟插件
$ grafana-cli plugins install grafana-clock-panel
安装Zabbix插件
$ grafana-cli plugins install alexanderzobnin-zabbix-app
安装服务器端图像渲染组件
$ yum install -y fontconfig freetype* urw-fonts
6.3 创建服务启动文件
$ cat <
-homepath:指定grafana的工作目录
6.4 启动grafana服务
$ systemctl daemon-reload $ systemctl enable --now grafana.service $ systemctl status grafana.service $ ss -ntulp | grep grafana-server tcp LISTEN 0 128 :::3000 :::* users:(("grafana-server",pid=120140,fd=9))
6.5 配置数据源
在浏览器地址栏输入主机IP和grafana服务端口访问Grafana UI界面后,添加Prometheus数据源。
默认用户密码:admin/admin
6.6 导入json模板
一旦您配置了Prometheus服务器以收集您的 Harbor 指标,您就可以使用 Grafana来可视化您的数据。Harbor 存储库中提供了一个 示例 Grafana 仪表板,可帮助您开始可视化 Harbor 指标。
七、部署AlertManager服务(扩展)
Alertmanager是一个独立的告警模块,接收Prometheus等客户端发来的警报,之后通过分组、删除重复等处理,并将它们通过路由发送给正确的接收器;
7.1 下载安装包
$ wget https://github.com/prometheus/alertmanager/releases/download/v0.23.0/alertmanager-0.23.0.linux-amd64.tar.gz $ tar zxvf alertmanager-0.23.0.linux-amd64.tar.gz $ cp alertmanager-0.23.0.linux-amd64/{alertmanager,amtool} /usr/local/bin/
7.2 修改配置文件
$ mkdir /etc/alertmanager $ cat /etc/alertmanager/alertmanager.yml global: resolve_timeout: 5m route: group_by: ['alertname'] group_wait: 10s group_interval: 10s repeat_interval: 1h receiver: 'web.hook' receivers: - name: 'web.hook' webhook_configs: - url: 'http://127.0.0.1:5001/' inhibit_rules: - source_match: severity: 'critical' target_match: severity: 'warning' equal: ['alertname', 'dev', 'instance']
7.3 创建服务启动文件
$ cat <
7.4 启动服务
$ systemctl daemon-reload $ systemctl enable --now alertmanager.service $ systemctl status alertmanager.service $ ss -ntulp | grep alertmanager
7.5 配置告警规则
前面在Prometheus server的配置文件中中指定了告警规则的文件为/etc/prometheus/rules.yml。
$ cat /etc/prometheus/rules.yml groups: - name: Warning rules: - alert: NodeMemoryUsage expr: 100 - (node_memory_MemFree_bytes + node_memory_Cached_bytes + node_memory_Buffers_bytes) / node_memory_MemTotal_bytes*100 > 80 for: 1m labels: status: Warning annotations: summary: "{{$labels.instance}}: 内存使用率过高" description: "{{$labels.instance}}: 内存使用率大于 80% (当前值: {{ $value }}" - alert: NodeCpuUsage expr: (1-((sum(increase(node_cpu_seconds_total{mode="idle"}[1m])) by (instance)) / (sum(increase(node_cpu_seconds_total[1m])) by (instance)))) * 100 > 70 for: 1m labels: status: Warning annotations: summary: "{{$labels.instance}}: CPU使用率过高" description: "{{$labels.instance}}: CPU使用率大于 70% (当前值: {{ $value }}" - alert: NodeDiskUsage expr: 100 - node_filesystem_free_bytes{fstype=~"xfs|ext4"} / node_filesystem_size_bytes{fstype=~"xfs|ext4"} * 100 > 80 for: 1m labels: status: Warning annotations: summary: "{{$labels.instance}}: 分区使用率过高" description: "{{$labels.instance}}: 分区使用大于 80% (当前值: {{ $value }}" - alert: Node-UP expr: up{job='node-exporter'} == 0 for: 1m labels: status: Warning annotations: summary: "{{$labels.instance}}: 服务宕机" description: "{{$labels.instance}}: 服务中断超过1分钟" - alert: TCP expr: node_netstat_Tcp_CurrEstab > 1000 for: 1m labels: status: Warning annotations: summary: "{{$labels.instance}}: TCP连接过高" description: "{{$labels.instance}}: 连接大于1000 (当前值: {{$value}})" - alert: IO expr: 100 - (avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60 for: 1m labels: status: Warning annotations: summary: "{{$labels.instance}}: 流入磁盘IO使用率过高" description: "{{$labels.instance}}:流入磁盘IO大于60% (当前值:{{$value}})"
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~